000840252 001__ 840252 000840252 005__ 20210129231805.0 000840252 0247_ $$2doi$$a10.1007/s10955-017-1826-7 000840252 0247_ $$2ISSN$$a0022-4715 000840252 0247_ $$2ISSN$$a1572-9613 000840252 0247_ $$2WOS$$aWOS:000406657400002 000840252 0247_ $$2altmetric$$aaltmetric:18919561 000840252 037__ $$aFZJ-2017-07805 000840252 082__ $$a530 000840252 1001_ $$0P:(DE-Juel1)136887$$aGrassberger, Peter$$b0$$eCorresponding author 000840252 245__ $$aPercolation in Media with Columnar Disorder 000840252 260__ $$aNew York, NY [u.a.]$$bSpringer Science + Business Media B.V.$$c2017 000840252 3367_ $$2DRIVER$$aarticle 000840252 3367_ $$2DataCite$$aOutput Types/Journal article 000840252 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511852171_21604 000840252 3367_ $$2BibTeX$$aARTICLE 000840252 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000840252 3367_ $$00$$2EndNote$$aJournal Article 000840252 520__ $$aWe study a generalization of site percolation on a simple cubic lattice, where not only single sites are removed randomly, but also entire parallel columns of sites. We show that typical clusters near the percolation transition are very anisotropic, with different scaling exponents for the sizes parallel and perpendicular to the columns. Below the critical point there is a Griffiths phase where cluster size distributions and spanning probabilities in the direction parallel to the columns have power-law tails with continuously varying non-universal powers. This region is very similar to the Griffiths phase in subcritical directed percolation with frozen disorder in the preferred direction, and the proof follows essentially the same arguments as in that case. But in contrast to directed percolation in disordered media, the number of active (“growth”) sites in a growing cluster at criticality shows a power law, while the probability of a cluster to continue to grow shows logarithmic behavior. 000840252 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000840252 588__ $$aDataset connected to CrossRef 000840252 7001_ $$0P:(DE-HGF)0$$aHilário, Marcelo R.$$b1 000840252 7001_ $$0P:(DE-HGF)0$$aSidoravicius, Vladas$$b2 000840252 773__ $$0PERI:(DE-600)2017302-7$$a10.1007/s10955-017-1826-7$$gVol. 168, no. 4, p. 731 - 745$$n4$$p731 - 745$$tJournal of statistical physics$$v168$$x1572-9613$$y2017 000840252 8564_ $$uhttps://juser.fz-juelich.de/record/840252/files/10.1007_s10955-017-1826-7.pdf$$yRestricted 000840252 8564_ $$uhttps://juser.fz-juelich.de/record/840252/files/10.1007_s10955-017-1826-7.gif?subformat=icon$$xicon$$yRestricted 000840252 8564_ $$uhttps://juser.fz-juelich.de/record/840252/files/10.1007_s10955-017-1826-7.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000840252 8564_ $$uhttps://juser.fz-juelich.de/record/840252/files/10.1007_s10955-017-1826-7.jpg?subformat=icon-180$$xicon-180$$yRestricted 000840252 8564_ $$uhttps://juser.fz-juelich.de/record/840252/files/10.1007_s10955-017-1826-7.jpg?subformat=icon-640$$xicon-640$$yRestricted 000840252 8564_ $$uhttps://juser.fz-juelich.de/record/840252/files/10.1007_s10955-017-1826-7.pdf?subformat=pdfa$$xpdfa$$yRestricted 000840252 909CO $$ooai:juser.fz-juelich.de:840252$$pVDB 000840252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136887$$aForschungszentrum Jülich$$b0$$kFZJ 000840252 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000840252 9141_ $$y2017 000840252 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000840252 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STAT PHYS : 2015 000840252 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000840252 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000840252 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000840252 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000840252 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000840252 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000840252 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000840252 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000840252 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000840252 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000840252 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000840252 980__ $$ajournal 000840252 980__ $$aVDB 000840252 980__ $$aI:(DE-Juel1)JSC-20090406 000840252 980__ $$aUNRESTRICTED