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We investigate the spinless Anderson-Holstein model routinely employed to describe the basic physics of

phonon-assisted tunneling in molecular devices. Our focus is on small to intermediate electron-phonon coupling;

we complement a recent strong coupling study [Phys. Rev. B 87, 075319 (2013)]. The entire crossover from the

antiadiabatic regime to the adiabatic one is considered. Our analysis using the essentially analytical functional

renormalization group approach backed up by numerical renormalization group calculations goes beyond lowest

order perturbation theory in the electron-phonon coupling. In particular, we provide an analytic expression for

the effective tunneling coupling at particle-hole symmetry valid for all ratios of the bare tunnel coupling and

the phonon frequency. It contains the exponential polaronic as well as the power-law renormalization in the

electron-phonon interaction; the latter can be traced back to x-ray edgelike physics. In the antiadiabatic and

the adiabatic limit this expression agrees with the known ones obtained by mapping to an effective interacting

resonant level model and lowest order perturbation theory, respectively. Away from particle-hole symmetry, we

discuss and compare results from several approaches for the zero temperature electrical conductance of the

model.
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I. INTRODUCTION

Studying phonon effects on the spectral and transport

properties of bulk electronic systems has a long history in

condensed matter physics and is a topic of textbooks (see, e.g.,

Ref. [1]). The development of molecular electronics led to a

new twist to the electron-phonon problem. In such systems the

molecular phonon modes only couple locally to a restricted

number of relevant molecular electronic levels. The molecule

is additionally coupled to electronic reservoirs via tunnel

barriers with the tunnel coupling providing another energy

scale. The basic physics of such systems can be obtained from

model studies (see, e.g., Ref. [2]).

We here focus on one of the most elementary models of

molecular electronics, the so-called single-level spinless

Anderson-Holstein model (SAHM) defined by the

Hamiltonian

H = Hlead + Hmol + Hcoup. (1)

The first term describes two (for simplicity) identical

fermionic leads (reservoirs) with dispersion εk

Hlead =
2
∑

α=1

∑

k

εkc
†
α,kcα,k. (2)

The second one is associated with the single-level molecule

of energy ǫ0 coupled to a single phonon mode with frequency

ω0 > 0 by the coupling constant λ � 0

Hmol = ǫ0d
†d + ω0b

†b + λd†d(b† + b) (3)

and the third models the molecule-reservoir tunnel coupling

of amplitude t

Hcoup =
t

√
Nsites

2
∑

α=1

∑

k

(d†cα,k + H.c.). (4)

Here Nsites ∈ N denotes the number of lattice sites in each

of the leads. Considering low temperatures this Hamiltonian

shows intriguing many-body physics. We will discuss

that this even holds in the limit of small to intermediate

electron-phonon coupling λ (for the reference scale, see below)

on which we focus. This allows us to gain analytical results.

Aiming at different goals which range from fundamental

insights into correlation physics (e.g., the Kondo effect) to the

explanation of experimental data the equilibrium physics of

this model and its spinful variant was studied using a variety

of approximate analytical as well as numerical methods [2–9].

Recently the attention shifted towards the nonequilibrium

properties either in a bias-voltage driven steady state [10–21]

or even considering the relaxation dynamics [22]. The former

type of nonequilibrium studies led to a better understanding

of the Franck-Condon blockade which was also observed

in a molecular electronics experiment [23]. However, we

here consider the equilibrium properties (including linear

transport), focus on the low-temperature correlation physics

at small to intermediate λ, and this way fill a gap in our

understanding of the model.

Correlation effects are most prominent if the level energy ǫ0

is taken to be λ2/ω0 = Ep, the polaronic shift [1], for which the

Hamiltonian Eqs. (1)–(4) becomes particle-hole symmetric.

Later on we will also consider general ǫ0 but for the following

discussion consider this particle-hole symmetric point.

In the antiadiabatic limit Ŵ ≪ ω0, with the (bare) tunnel

coupling Ŵ = 2πρleadt
2, as well as the complementary adia-

batic regime Ŵ ≫ ω0, the physics is rather well understood.

Here ρlead denotes the (assumed to be) constant lead density

of states (wide-band limit; see below). Deep in the adiabatic

regime Ŵ ≫ ω0 the phonon is too slow to respond to the

fermionic tunneling events which occur with high frequency;

the effect of the phonon on the properties of the fermionic

(sub)system is minor. Consistently perturbation theory in λ

can even be used for (fairly) large electron-phonon couplings
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as it turns out that the expansion parameter is Ep/Ŵ. In the

antiadiabatic regime the phonon time scale 1/ω0 is much

smaller than the fermionic dwell time 1/Ŵ and the phonon

can efficiently respond to hopping events. A polaron forms

which leads to the well known suppression of the tunneling

rate ∼exp {−(λ/ω0)2} (polaronic suppression) [1,24].

In the inspiring recent work by Eidelstein, Goberman, and

Schiller [25] this picture was refined in the antiadiabatic limit

and complemented by results obtained in the crossover regime

from antiadiabatic to adiabatic. Employing a Schrieffer-Wolff-

like mapping of the SAHM to the interacting resonant level

model (IRLM) and borrowing established results for this

the authors showed that the exponential suppression in the

antiadiabatic regime is merely the zeroth order term in

an expansion in Ŵ/ω0. In the limits of weak λ ≪ ω0 and

strong λ ≫ ω0 electron-phonon coupling one finds for the

renormalized effective tunneling rate

ŴIRLM
eff

ω0

=
[

Ŵ

ω0

e−(λ/ω0)2

]1− 4
π

Ŵ
ω0

uλ

, (5)

with

uλ =







(

λ
ω0

)2
for λ ≪ ω0

(

λ
ω0

)−2
for λ ≫ ω0

. (6)

An analytic expression for the function uλ beyond these

two limits can be found in Ref. [25]. Within the IRLM

the power-law renormalization with argument Ŵ/ω0 can be

traced back to x-ray edgelike physics [26]. The crossover

from antiadiabatic to adiabatic behavior was studied using

the numerical renormalization group (NRG) focusing on large

electron-phonon couplings λ ≫ ω0. It was shown that an

extended antiadiabatic regime exists in which Ŵ ≪ ω0 does

no longer hold but the low-energy physics of the SAHM is

still described by an effective IRLM. The crossover to the

adiabatic regime sets in only for Ŵeff ≈ ω0 and the latter is

eventually reached for Ŵ � Ep.

Our study is complementary to that of Ref. [25] as we con-

sider the entire crossover in the limit of small to intermediate

λ. Using an approximate functional renormalization group

(FRG) approach which is controlled for such electron-phonon

couplings we provide an analytic expression of Ŵeff for all

Ŵ/ω0. It contains the combined exponential and power-law

renormalization of Eq. (5) in the antiadiabatic limit as well as

the perturbative one obtained for Ep ≪ Ŵ. A comparison with

NRG data shows that it provides a good approximation for

all Ŵ/ω0. We discuss the limits of the mapping to the IRLM

in the antiadiabatic regime. In addition, we discuss transport

and spectral properties away from particle-hole symmetry

ǫ0 �= Ep. In a followup paper [27] we extend the present

work to investigate, within the NRG approach, the finite

temperature linear thermoelectric properties of the SAHM,

comparing our results, where possible, with corresponding

FRG calculations at finite temperature.

The remainder of the paper is structured as follows. In

Sec. II we introduce our nonperturbative FRG approach to

the SAHM. We consider the lowest order truncation [28]

which is controlled for small to intermediate electron-phonon

coupling; being a single-particle term fermionic tunneling is

considered to all orders. The coupled flow equations for the

complex-valued self-energy are derived. Due to retardation

effects the self-energy is frequency dependent. We discuss

the relation between lowest order truncated FRG and first

order perturbation theory in λ2. Our NRG approach is briefly

summarized. The results Sec. III contains several subsections.

In the first we derive a simplified flow equation for the

imaginary part of the self-energy at particle-hole symmetry;

the real part vanishes. This equation can be solved analytically

for all Ŵ/ω0; from the self-energy Ŵeff can be computed.

In the second subsection the renormalized tunneling rate

obtained from the simplified equation is compared to the one

derived from the numerical solution of the full lowest order

flow equation as well as to Ŵeff determined from NRG. For

λ/ω0 � 1 the agreement is very good for all Ŵ/ω0. Finally, we

consider the effects of particle-hole asymmetry on the T = 0

linear electrical conductance, comparing perturbation theory,

FRG, and NRG results. We conclude with a brief summary

and outlook in Sec. IV. Details of the implementation of the

numerical solution of the full lowest order FRG flow equations,

the convergence of the NRG results with the number of phonon

states, and a comparison of NRG spectral functions with lowest

order perturbation theory results are given in the Appendices.

II. METHODS

A. General considerations

Before introducing our methods we further characterize

the model and summarize general properties. We assume

that the fermionic leads feature particle-hole symmetric

bands, that is that wave numbers come in pairs such that

εk′ = −εk . Under the transformation d† → d, c
†
α,k → −cα,k′ ,

and b → −b − λ/ω0 the Hamiltonian Eqs. (1)–(4) then

becomes invariant provided the molecular dot level energy

is chosen as ǫ0 = Ep ≡ λ2/ω0. One obtains nd(ǫ0) = 〈d†d〉 =
1 − nd(Ep − [ǫ0 − Ep]) such that ǫ0 = Ep corresponds to half

filling of the molecular level. This defines the particle-hole

symmetric point of the model. The quantity ǫ0 − Ep, which

controls the charge on the molecular dot, can be taken as the

gate voltage on the dot.

As we are not interested in effects of details of the

fermionic bands we take the so-called wide band limit and

consider structureless reservoirs with constant density of states

ρlead(ω) = ρlead for ω ∈ [−D,D], with the band width 2D; it

vanishes outside this energy interval. Integrating out the leads

produces a reservoir contribution to the molecular self-energy

of the form 
res(iξn) = −iŴsgn (ξn), Ŵ = 2πt2ρlead. Here

ξn denotes a fermionic Matsubara frequency. For λ = 0 the

single-particle Green function of the molecular level is then

given by

G0
mol(iξn) = [iξn − ǫ0 + iŴsgn (ξn)]−1 (7)

and the corresponding spectral function is a Lorentzian of

width Ŵ.

B. The functional RG

To set up our FRG approach following the standard proce-

dure [28] we integrate out the phonons in a functional integral

approach to the many-body problem (see, e.g., Ref. [21]). This
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way we end up with a purely fermionic action with a local

“on-molecule,” attractive, and retarded (frequency dependent)

two-particle interaction of the form

U (iνn) = −
2ω0λ

2

ν2
n + ω2

0

. (8)

Here νn denotes a bosonic Matsubara frequency. For this

action we employ the FRG in its lowest order truncation

with a bare two-particle vertex and a flowing self-energy

[28]. It is controlled for small to intermediate λ but due

to resummation of certain classes of diagrams inherent to

the RG procedure goes beyond simple perturbation theory.

In particular, it was shown that this truncation captures the

power-law renormalization of the tunnel coupling in the

IRLM with an exponent which agrees with the exact one to

leading order in the two-particle interaction [29]. As already

mentioned in the introduction this piece of renormalization

physics will also become essential in the antiadiabatic limit

of the SAHM. Further justification of our approximation will

be given a posteori by comparing to the exact result in the

antiadiabatic limit as well as to NRG results for general Ŵ/ω0.

In contrast to earlier applications of lowest order FRG

to correlated quantum dots [29,30] the self-energy acquires

a frequency dependence via the frequency dependence of

the fermionic interaction. The present study must also be

contrasted to an earlier work in which the Anderson-Holstein

model with spin was studied employing FRG [21,31]. In this

the focus was on the Kondo physics in the presence of a local

phonon mode (mainly in bias-voltage driven nonequilibrium)

which requires a truncation of the FRG equations to higher

order.

From now on we consider the zero temperature limit in

which the Matsubara frequency becomes continuous. In our

scheme the RG cutoff 
 is introduced via this frequency. In

the functional integral representation of the quantum many-

body problem we replace the reservoir-dressed noninteracting

molecular propagator Eq. (7) by G
0,

mol (iν) = G0

mol(iν)�(|ν| −

). Initially we take 
 → ∞ to suppress any free propagation.

The action is thus purely given by the interaction Eq. (8).

The propagation is now turned on successively by sending


 to 0; at 
 = 0 the cutoff-free problem is recovered. This

procedure avoids logarithmic divergencies which might appear

in a single-step perturbative treatment (see, e.g., Ref. [29] for

the IRLM). Employing the generating functional of the one-

particle irreducible vertex functions and replacing the flowing

effective two-particle interaction by the bare one this procedure

boils down to a set of coupled differential flow equations for

the self-energy [28]. In the present case they read

∂
ǫ
(iν) = −
2Ep

π

ǫ
(i
)

[
 + Ŵ − γ 
(i
)]2 + [ǫ
(i
)]2
+

1

π

ω0λ
2

(ν − 
)2 + ω2
0

ǫ
(i
)

[
 + Ŵ − γ 
(i
)]2 + [ǫ
(i
)]2

+
1

π

ω0λ
2

(ν + 
)2 + ω2
0

ǫ
(−i
)

[−
 − Ŵ − γ 
(−i
)]2 + [ǫ
(−i
)]2
, (9)

∂
γ 
(iν) = −
1

π

ω0λ
2

(ν − 
)2 + ω2
0

−
− Ŵ + γ 
(i
)

[
+ Ŵ − γ 
(i
)]2 + [ǫ
(i
)]2
−

1

π

ω0λ
2

(ν + 
)2 + ω2
0


+ Ŵ + γ 
(−i
)

[−
− Ŵ − γ 
(−i
)]2 + [ǫ
(−i
)]2
,

(10)

with the real functions ǫ
(iν) and γ 
(iν) where 

(iν) =
ǫ
(iν) + iγ 
(iν). The initial conditions are

ǫ
→∞(iν) = ǫ0 − Ep, γ 
→∞(iν) = 0. (11)

Note that not only the flow of the real and imaginary parts of



 are coupled but also the one of the self-energy at different

frequencies [via ǫ
(±i
) and γ 
(±i
) appearing on the right

hand sides]. From the structure of the right hand sides and the

symmetry of the initial conditions it is apparent that ǫ
(iν)

is even in ν while γ 
(iν) is odd; in the following we employ

this.

Discretizing the Matsubara frequency on an appropriate

grid (which might not necessarily be equidistant; see below,

in particular Appendix A) this set of equations can easily

be solved on a computer. When later presenting data of the

numerical solution of the FRG flow equations we always

verified that convergence with respect to the grid size as well

as the lower and the upper bound of the grid was achieved.

C. Perturbation theory in λ/ω0

From FRG truncated to first order it is easy to obtain the

self-energy in lowest order perturbation theory. For this one

simply has to switch off the feedback of the self-energy on

the right hand sides of the flow equations and replace the

initial condition Eq. (11) for ǫ
→∞(iν) by ǫ0 [28]. Then the

differential equations for the real and imaginary part decouple

and can be integrated leading to the Hartree and Fock parts



pt

H = −Ep

[

1 −
2

π
arctan

(ǫ0

Ŵ

)

]

, (12)



pt

F (iν) =
λ2

2π
[(d̃+ − d̃−) ln {−Ŵ + iǫ0} − d̃+ ln{ν + iω0}

+ d̃− ln{ν − iω0} − (d+ − d−) ln{Ŵ + iǫ0}
+ d+ ln{ν + iω0} − d− ln{ν − iω0}

− iπ (d̃+ − d̃−) sgn (ǫ0) − iπ (d+ + d−)], (13)

respectively, with

d± =
−1

ǫ0 ± ω0 − i(ν + Ŵ)
, d̃± =

−1

ǫ0 ± ω0 − i(ν − Ŵ)
. (14)

These expressions can equivalently be obtained by straight-

forward diagrammatic perturbation theory. The analytic con-

tinuation to the real frequency axis can be performed leading
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to


pt,R(ν) = −Ep

[

1 −
2

π
arctan

(ǫ0

Ŵ

)

]

+
λ2

2π

∑

s=±

[

iπŴas sgn (ν + sω0)

+ Ŵas ln
{

ǫ2
0 + Ŵ2

}

− 2Ŵas ln |ν + sω0|

− 2as(ν + sω0 − ǫ0) arctan
(ǫ0

Ŵ

)

+
π

ν − sω0 − ǫ0 + iŴ

]

(15)

for the retarded self-energy in first order (in λ2) perturbation

theory. Here

a± = ±[(ν ± ω0 − ǫ0)2 + Ŵ2]−1. (16)

The perturbative self-energy shows logarithmic singularities

for frequencies ν = ±ω0 leading to zeros in the spectral

function (see Appendix C).

To maintain the particle-hole symmetric point it is more

appropriate to consider first order perturbation theory with a

propagator dressed by a self-consistently determined Hartree

self-energy. For this ǫ0 on the right hand sides of Eqs. (12)–(16)

must be replaced by ǫ0 + 
H and Eq. (12) must be solved

self-consistently. This procedure will be used in the following.

D. The numerical RG

We briefly introduce the NRG procedure applied to the

SAHM which provides an accurate description of physical

properties in all parameter regimes of interest to us. The main

ingredient of this approach is the logarithmic discretization

of the reservoir(s) dispersion εk → ε±,n,n = 0,1, . . . with

ε±,n=0 = ±D and ε±,n = ±D
−n+1−z,n = 1,2, . . . . It is con-

trolled via two parameters, namely the scale parameter 
 (→
1) and the so-called z-averaging parameter z which takes Nz

values ∈ (0,1]. The scale parameter characterizes the relative

spacing of the energy intervals while the z-averaging parameter

provides different realizations of the discretized band with the

same relative spacing. Averaging physical observables over

such different realizations largely eliminates discretization

induced oscillations in physical quantities occurring at scale

parameters 
 > 1 [32].

The scale parameter 
 used in NRG should not be confused

with the FRG cutoff 
. In the respective literature on NRG

and FRG using this symbol for the two parameters is standard

and we thus accept this double meaning.

The next crucial step is the mapping to a semi-infinite chain

where the impurity is only coupled to the first site (representing

a single conduction fermion degree of freedom). Following the

standard tridiagonalization procedure [33–35], we can find the

desired chain Hamiltonian as H = HM→∞, where

HM = Hmol +

√

Ŵ

πρlead

2
∑

α=1

(d†fα,0 + H.c.)

+
2
∑

α=1

M
∑

n=0

tzn(f †
α,nfα,n+1 + H.c.), (17)

{fα,n} is a new set of mutually orthogonal (Wannier orbital)

operators constructed from linear combinations of the original

set {cα,±n} (defining the logarithmically discretized band) and

tzn ∼ 
− (n−1+z)
2 is the hopping amplitude from the nth site of

the chain to the (n + 1)th one. An iterative diagonalization

can be set up using the following recursive formula between

the truncated Hamiltonians

HM+1 = HM + tzn(f †
α,nfα,n+1 + H.c.). (18)

This can also be regarded as the RG transformation T such

that T [HM ] = HM+1 [34]. The maximum chain length N ,

required to describe the full spectrum of the Hamiltonian H at

zero temperature, can be chosen such that β−1
N ≡ 


−(N−1)
2 ≪

Ŵ exp {−(λ/ω0)2} to capture the well known polaronic sup-

pression [1,24].

The dimension of the Hamiltonian matrix in the very

first iteration, HM=−1 = Hmol, is already infinite due to the

presence of bosonic degrees of freedom. However, as has

been established earlier [6], we can resolve the low-energy

behavior of the system with a finite number of bosons Nb;

for a given electron-phonon coupling λ one has to keep

� ((λ/ω0)
2 + 5λ/ω0) phonons [36]. Therefore, the dimension

of the Hilbert space of HM=−1 = Hmol is 2 × Nb at the first

iteration and it grows by a factor of 4 at each stage. Due

to this exponential growth in the dimension of the Hilbert

space, we are forced to neglect high-energy states beyond

some iteration m = m0 and retain only the first Ns (∼1500)

low-energy states, thereby keeping the calculations feasible at

each iteration m = m0,m0 + 1, . . . .

To calculate a dynamical quantity, such as the molecular

dot spectral function A(ν) ≡ − 1
π

Im{GR
mol(ν)}, with GR

mol(ν) =
〈〈d; d†〉〉ν+iη = −i

∫∞
0

dt〈[d(t),d†(0)]+〉ei(ν+iη)t , η → 0+ and

〈· · · 〉 denoting the thermal expectation value, we follow the

procedure of Ref. [32]. At vanishing temperature and a given

frequency ν, we choose the best shell M for this frequency

such that tzM−1 � ν < tzM−2 and obtain

A(ν) =
1

ZM

Ns
∑

n,l=1

|〈n|d|l〉|2δ
(

ν − EM
n + EM

l

)

×
(

e−βN EM
n + e−βN EM

l

)

. (19)

Here ZM =
∑

n exp{−βNEM
n } denotes the partition function

of the best shell M; {|n〉} are the eigenvectors and {EM
n } the

eigenvalues of HM . We use the standard logarithmic Gaussian

broadening with dimensionless parameter b = 0.3 [35].

The phonon contribution to the fermionic (retarded) self-

energy 
R(ν) at frequency ν can be calculated within

NRG in terms of the retarded Green functions F R(ν) =
〈〈(b + b†)d†; d〉〉ν+iη and GR

mol(ν) via 
R(ν) = F R(ν)

GR
mol(ν)

[19,37].

Using 
R(ν), and the exact self-energy contribution from

the reservoirs −iŴ, allows the spectral function A(ν) to be

calculated via

A(ν) = −
1

π
Im

{

1

ν − ǫ0 − 
R(ν) + iŴ

}

. (20)

This approach to calculating A(ν) can significantly improve

the spectral function as compared to Eq. (19), as discussed in

more detail in Ref. [37]. For all the subsequent calculations,

195155-4



EXPONENTIAL AND POWER-LAW RENORMALIZATION IN . . . PHYSICAL REVIEW B 96, 195155 (2017)

we used 
 = 4, Nz = 4 [only for Fig. 6(a), we used Nz = 6],

Nb = 40 (see Appendix B) and Ŵ = 10−5D.

III. RESULTS

A. The effective tunneling rate at particle-hole symmetry:

Analytical insights

As a first application we study the FRG flow equations at

the particle-hole symmetric point ǫ0 = Ep. In this case the

initial condition Eq. (11) for the effective level position is

ǫ
→∞(iν) = 0. The flow equation (9) then implies ǫ
 = 0 for

all 
. The remaining equation (10) can be simplified to

∂
γ 
(iν) =
4ω0λ

2

π

1
∣

∣
 + Ŵ − γ 
(i
)
∣

∣

×
ν


[

(ν − 
)2 + ω2
0

][

(ν + 
)2 + ω2
0

] . (21)

Defining a frequency grid this equation can easily be solved

on a computer using standard routines. For details on this, see

Appendix A. The propagator of the molecular level at the end

of the RG flow is given by (ν � 0)

Gmol(iν) = [iν + iŴ − iγ (iν)]−1, (22)

where we defined γ (iν) = γ 
=0(iν).

To read off the renormalized tunnel coupling we Taylor

expand

γ 
(iν) = γ 

1 ν + γ 


3 ν3 + · · · (23)

employing that γ 
(iν) is odd and rewrite the propagator for

small ν at the end of the flow as

Gmol(iν) ≈ (1 − γ1)[iν + iŴ/(1 − γ1)]−1. (24)

From this expression the renormalized tunneling rate follows

as

Ŵeff = Ŵ/(1 − γ1) ≈ Ŵ(1 + γ1), (25)

where in the last step we used that γ1 is small if λ � ω0. In

fact, the second expression to relate Ŵeff and γ1 turns out to be

more consistent.

Using Eqs. (21) and (23) we can write down a flow equation

for the dimensionless first Taylor coefficient γ 

1 of γ 
(iν)

∂
γ 

1 =

4ω0λ
2

π

1

|
 + Ŵ − γ 
(i
)|



(


2 + ω2
0

)2
(26)

which, however, is not closed as the full function γ 
(iν)

appears on the right hand side. The use of this equation

thus requires further considerations. Before presenting these

in Sec. III A 2 we next use Eq. (26) to derive an expression for

Ŵeff in lowest order perturbation theory.

1. Lowest order perturbation theory in λ/ω0

For ǫ0 = Ep a self-consistent solution of the Hartree equa-

tion [Eq. (12) with ǫ0 → ǫ0 + 
H] is given by 
H = −Ep. It

turns out to be unique as long as Ep/Ŵ = λ2/(ω0Ŵ) < π/2.

Thus ǫ0 + 
H appearing on the right hand side of the Fock

part of the self energy computed with the Hartree propagator

[Eq. (13) with ǫ0 → ǫ0 + 
H] vanishes in this case and

Eq. (26) with the self-energy feedback set to zero provides

an equation for γ1 to lowest order in λ2. It reads

∂


(

γ
pt

1

)
 =
4ω0λ

2

π

1


 + Ŵ



(


2 + ω2
0

)2
(27)

and can be integrated from 
 = ∞ down to 
 = 0 employing

the initial condition (γ
pt

1 )

=∞ = 0. Inserting γ

pt

1 = (γ
pt

1 )

=0

into the second relation of Eq. (25) we obtain in lowest order

perturbation theory

Ŵ
pt

eff

Ŵ
= 1 −

(

λ

ω0

)2
[

1 +
(

Ŵ

ω0

)2
]−2

×

[

1 +
4

π

Ŵ

ω0

ln
Ŵ

ω0

+
Ŵ

ω0

{

2

π
−

Ŵ

ω0

+
2

π

(

Ŵ

ω0

)2
}]

.

(28)

In the adiabatic limit Ŵ ≫ ω0 this reduces to the well known

result [19,38]

Ŵ
pt

eff

Ŵ
= 1 −

2

π

(

λ

ω0

)2
ω0

Ŵ
+ O([ω0/Ŵ]2)

= 1 −
2

π

Ep

Ŵ
+ O([ω0/Ŵ]2). (29)

In the antiadiabatic regime Ŵ ≪ ω0 we obtain

Ŵ
pt

eff

Ŵ
=1−

(

λ

ω0

)2[

1+
4

π

Ŵ

ω0

ln
Ŵ

ω0

+
2

π

Ŵ

ω0

+ O({Ŵ/ω0}2)

]

.

(30)

This result should be compared to the lowest order Taylor

expansion in λ/ω0 of Eq. (5) obtained by the mapping to an

IRLM

ŴIRLM
eff

Ŵ
= 1−

(

λ

ω0

)2
[

1+
4

π

Ŵ

ω0

ln
Ŵ

ω0

+O

(

{

Ŵ

ω0

ln
Ŵ

ω0

}2
)]

.

(31)

This shows that the mapping only holds up to order Ŵ
ω0

ln Ŵ
ω0

(at least for small λ/ω0); already the linear term ∼Ŵ/ω0 is not

properly represented. This defines the limit of the mapping of

the SAHM to the IRLM in the antiadiabatic regime.

2. Approximate solution of the FRG equation

When numerically integrating the full lowest order flow

equation (21) from 
 = ∞ to 
 = 0, γ 
(i
) takes sizable

values [starting at γ 
=∞(iν) = 0 for all ν] only when 
 is

so small that one can linearize γ 
(i
) ≈ γ 

1 
. Inserting this

expansion on the right hand side of Eq. (26) leads to a closed

equation for γ 

1

∂
γ 

1 ≈

4ω0λ
2

π

1

1 − γ 

1

1


 + Ŵ

1−γ 

1



(


2 + ω2
0

)2
. (32)

As γ 

1 ∼ λ2 we can further expand

∂
γ 

1 ≈

4ω0λ
2

π

(

1+ γ 

1

) 1


+ Ŵ
(

1+ γ 

1

)



(


2 + ω2
0

)2
. (33)
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For Ŵ ≪ ω0 the last factor of Eq. (33) ensures that γ 

1

changes significantly only on the scale 
 ≈ ω0. In this regime

Ŵγ 

1 in the denominator of the second to last factor can be

neglected as compared to 
 + Ŵ. In this antiadiabatic regime

the differential flow equation thus reduces to

∂


(

1 + γ 

1

)

1 + γ 

1

=
4ω0λ

2

π

1


 + Ŵ



(


2 + ω2
0

)2
, (34)

which according to Eq. (25) is a flow equation for Ŵeff/Ŵ.

Remarkably the right hand side has exactly the form

as obtained in perturbation theory Eq. (27). Rewriting

Eq. (33) as

∂
γ 

1 =

4ω0λ
2

π

(

1 + γ 

1

) 1


 + Ŵ

1

1 + Ŵγ 

1


+Ŵ



(


2 + ω2
0

)2
(35)

it is obvious that in the adiabatic limit Ŵγ 

1 /(
 + Ŵ) can be

neglected as compared to 1 and we recover Eq. (34); it is thus

tempting to conclude that Eq. (34) is valid for all Ŵ/ω0. The

solution of this equation is given by

ŴFRG
eff

Ŵ
= exp







−
(

λ

ω0

)2
[

1 +
(

Ŵ

ω0

)2
]−2

×

[

1+
4

π

Ŵ

ω0

ln
Ŵ

ω0

+
Ŵ

ω0

{

2

π
−

Ŵ

ω0

+
2

π

(

Ŵ

ω0

)2
}]







.

(36)

Figure 1 shows that for sufficiently small λ, in which our

lowest order FRG approach is controlled, Eq. (36) agrees rather

well with the Ŵeff obtained from the numerical solution of

the full lowest order flow equation (21) as well as with the

renormalized tunneling rate computed using NRG for all Ŵ/ω0;

for more, see the next section.

In the adiabatic regime Ŵ ≫ ω0 Eq. (36) reduces to the

perturbative result Eq. (29). In the opposite antiadiabatic limit

Ŵ ≪ ω0 in which only the term Ŵ
ω0

ln Ŵ
ω0

in the argument

of the exponential function in Eq. (36) is kept we exactly

reproduce the small λ result for Ŵeff obtained by the mapping

to the IRLM Eq. (5). The lowest order truncated FRG thus

provides a proper resummation of diagrams (perturbative

in λ) to reproduce the involved interplay of exponential

(polaronic) as well as power-law (x-ray edge) renormalization

in the electron-phonon coupling λ. From the perspective of

the method this remarkable result provides another example

that essentially analytical truncated FRG, which leads to

transparent equations, can be used to study complex many-

body physics including correlation effects [28–30]. From the

perspective of the physics Eq. (36) provides a remarkably

simple closed expression for the renormalized tunneling rate

at small to intermediate electron-phonon coupling λ going

way beyond lowest order perturbation theory in λ which is

(approximately) valid for all Ŵ/ω0.

B. Numerical results for the effective tunneling rate

at particle-hole symmetry

We want to verify the validity of the approximated tunneling

rate Eq. (36) obtained analytically in the previous section, by

FIG. 1. (a) and (b): The ratio of the effective tunneling rate Ŵeff

to the bare value Ŵ as a function of Ŵ/ω0 using different approaches.

(c) The ratio (λ/ω0)
−2

ln (Ŵeff/Ŵ) as a function of Ŵ/ω0 for different

electron-phonon couplings computed within NRG.

comparing it to the numerical solution of the full first order

truncated FRG flow equation (21) and also to NRG results. In

NRG, the renormalized tunneling rate is calculated from the

charge susceptibility:

Ŵeff =
1

πχc

, (37)

with

χc = −
dnmol(ǫ0)

dǫ0

∣

∣

∣

∣

ǫ0=Ep

. (38)
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The occupancy nmol of the molecular level can be calculated as

nmol =
1

ZN

∑

n

〈n| d†d |n〉 e−βN EN
n , (39)

with {EN
n } and {|n〉} being the eigenvalues and the eigenvectors

of the longest chain Hamiltonian HN .

As mentioned before, the RG resummation within lowest

order truncated FRG is well controlled up to first order in λ2.

After numerically solving the full flow equation (21) for γ (ν)

for consistency we thus compute the effective tunneling rate as

in Eq. (25) by expanding Ŵeff/Ŵ ≈ 1 + dγ (iν)

dν
|
ν=0

. The details

of the numerical implementation of the solution of the flow

equation can be found in Appendix A.

Figure 1(a) shows a comparison of Ŵeff obtained by the

different methods introduced for electron-phonon coupling

λ = 0.5ω0 all the way from the antiadiabatic limit to the adi-

abatic one (note the logarithmic x-axis scale). In the adiabatic

limit the results of all the methods agree very well, however,

as we approach the antiadiabatic limit, the purely perturbative

result Eq. (28) starts to deviate. In particular, it fails to produce

the result obtained from the mapping to the IRLM Eq. (5); in

the antiadiabatic regime the physics is nonperturbative even at

fairly small λ/ω0. The nice match of the NRG and the FRG

data sets proves that this physics can indeed be captured within

lowest order truncated FRG. Additionally, the agreement of the

analytical expression Eq. (36) to the result from the numerical

solution of the full flow Eq. (21) [‘FRG’ in Fig. 1(a)] verifies

the validity of the approximations introduced in Sec. III A 2.

The phonon-assisted suppression of tunneling processes

depends on the strength of the electron-phonon coupling,

as it is shown in Fig. 1(b). As we approach the strong

coupling regime λ > ω0, higher order coefficients in the

Taylor expansion of the self-energy feedback in Eq. (23)

produce sizable contributions. Therefore the solution of the

first order truncated FRG Eq. (21) becomes different from

the approximated formula Eq. (36), which was obtained by

including the linear coefficient γ1 only. The approximated

formula matches better with the NRG data as compared to

the results obtained from the numerical solution of the full

lowest order truncated FRG for λ ≈ ω0 which, however, must

be regarded as accidental.

Figure 1(c) shows that also the NRG data for Ŵeff approx-

imately follow a scaling form as it is exactly fulfilled in the

approximate (in λ2) expression Eq. (36); ( λ
ω0

)
−2

ln (
ŴFRG

eff

Ŵ
) is

only a function of ω0

Ŵ
. This seems to be valid even for λ � ω0

as long as we stay away from the crossover regime between

antiadiabatic and adiabatic; in this the exact solution and thus

the highly accurate NRG approximation to the latter contains

λ/ω0 dependent corrections to the simple scaling form. This

insight is consistent to the earlier study [25], where it was

found that in the strong coupling regime the aforementioned

ratio is a function of Ep/Ŵ.

We address the two extreme antiadiabatic and adiabatic

regimes separately in Fig. 2. In the adiabatic limit, the slow

molecular vibrations cannot change the charge fluctuations

significantly; conventional perturbation theory suffices and

matches well with other methods [see Fig. 2(a)]. As we go

sufficiently deep into the adiabatic regime, we obtain the well

known asymptotic behavior Eq. (29). We note in passing that

FIG. 2. (a) 1 − (Ŵeff/Ŵ) as a function of Ep/Ŵ for ω0 = 0.2Ŵ

and ω0 = 0.02Ŵ (adiabatic limit). (b) 1 − (Ŵeff/Ŵ) as a function of

(λ/ω0)
2

for ω0 = 103Ŵ (antiadiabatic limit).

in Ref. [19] the ratio Ŵ/ω0 was not chosen large enough to

properly reproduce the simple expression Eq. (29); for the

value considered in this work corrections in ω0/Ŵ as given in

Eq. (28) must be kept.

Figure 2(b) shows that in the antiadiabatic limit, perturba-

tive results start to deviate already for small electron-phonon

couplings. The overall physical picture is the following:

phonons induce a retarded and attractive fermion-fermion

interaction on the dot [see Eq. (8)] and therefore, the tunneling

processes from the dot into the leads are suppressed. This

suppression is more significant in the antiadiabatic regime,

where phonons are quite fast compared to the tunneling

processes.

C. Gate voltage dependence of the T = 0 electrical conductance

Having investigated within perturbation theory, FRG and

NRG the emergent low-energy scale Ŵeff at particle-hole

symmetry, we now turn to the case of finite particle-hole

asymmetry and investigate how this scale manifests itself in the

gate voltage dependence of the T = 0 electrical conductance,

making comparisons between the different approaches. Within

the FRG approach, as formulated here in Matsubara space,

one would need to analytically continue the molecular dot

Green function to the real axis in order to calculate the linear
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FIG. 3. Comparison of the different approaches to compute the

T = 0 linear conductance as a function of the gate voltage ǫ0 − Ep

for a given phonon frequency ω0 = 2Ŵ in the weak coupling regime

(λ = 0.5ω0).

conductance from the molecular spectral function [39] as it is

often done. This analytic continuation is an ill-posed problem.

We can, however, compute the linear conductance as a function

of the (bare) level position from the FRG self-energy data

without performing the analytic continuation by employing a

continued fraction (CF) representation of the Fermi function f

f (βν) =
1

2
−

1

β

M
∑

p=1

{

Rp

ν − i
zp

β

+
Rp

ν + i
zp

β

}

(40)

at inverse temperature β. Here the M poles
zp

β
and residues Rp

can be calculated as proposed in Refs. [40,41]. The poles are

concentrated densely close to the real axis and they are further

apart as we go up and down the imaginary axis. This leads

to a very fast convergence of the sum in Eq. (40) as compared

to the Matsubara representation. To obtain the conductance

at vanishing temperature we choose a sufficiently small

β−1 = 10−4ŴFRG
eff . Employing the above mentioned relation

between the molecular spectral function A(ν) and the linear

conductance G we obtain [39]

G

G0

= −πŴ

∫ ∞

−∞
dνA(ν)∂νf (βν)

=
2πŴ

β

M
∑

p=1

RpIm

[

dGmol

(

i
zp

β

)

d
( zp

β

)

]

, (41)

where G0 = e2/h, with e and h denoting electric charge and

Planck’s constant, respectively.

To test the CF approach in the present context in Fig. 3

we compare the linear conductance obtained from the self-

energy in lowest order perturbation theory after performing

the analytic continuation as in Eq. (15) [using the first

line of Eq. (41)] (dashed line) and the continued fraction

representation employing Matsubara frequency data as in

Eqs. (12) and (13) [using the last line of Eq. (41)] (plus signs).

Both conductance curves agree well. For the weak interaction

of this figure, and on the scale of the plot, perturbation theory

matches the FRG data (obtained from the continued fraction

FIG. 4. Comparison of FRG (dashed lines) and NRG (stars)

results for the zero temperature linear conductance as a function

of the gate voltage ǫ0 − Ep for different strength of electron-phonon

couplings in the antiadiabatic limit (ω0 = 103Ŵ). The inset shows

the zero temperature conductance from NRG as a function of the

rescaled gate voltage (ǫ0 − Ep)/Ŵeff for different strength of the

electron-phonon coupling in the antiadiabatic limit (ω0 = 103Ŵ).

representation; circles) as well as the NRG ones (stars). The

latter were obtained from the spectral weight A(ν = 0) [see the

T = 0 limit of the first line of Eq. (41)]. Due to the presence

of phonons, the linear conductance is narrower as compared to

the noninteracting case. This effect can be captured within

perturbation theory as long as Ep/Ŵ < π/2. Therefore, if

we are deep in the antiadiabatic limit, perturbation theory is

limited to extremely small coupling constants λ/ω0.

Figure 4 shows that FRG results for G match very well

to the NRG data for λ/ω0 � 1. The narrowing of the linear

conductance reflects that due to molecular vibrations, small

misalignment of the gate voltage to the chemical potential of

the leads can result in a substantial drop in transport. This is just

another indication of the suppression of tunneling processes.

In fact, if we rescale the level position with the renormalized

tunneling rate Ŵeff , all the NRG curves corresponding to

different strengths of electron-phonon coupling collapse, with

good accuracy, to the noninteracting curve as shown in the

inset of Fig. 4. This shows that Ŵeff is the relevant low-energy

scale also away from particle-hole symmetry; the width of the

linear conductance resonance as a function of the level position

is given by Ŵeff .

IV. SUMMARY AND OUTLOOK

Using a combination of lowest order perturbation theory,

(truncated) FRG, and NRG we studied phonon assisted tunnel-

ing in an elementary model of a molecular electronics device.

Complementing an earlier strong coupling study [25] our focus

was on weak to intermediate electron-phonon coupling. We

derived an analytic expression for the renormalized tunnel

coupling at particle-hole symmetry valid for all ratios Ŵ/ω0

from the antiadiabatic into the adiabatic regime. It captures

the combined exponential (polaronic) and power-law (x-ray

edge singularity) renormalization in the antiadiabatic limit

known from the mapping to an effective IRLM. Away from
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particle-hole symmetry we investigated the influence of the

emergent low-energy scale Ŵeff on the T = 0 electrical conduc-

tance, comparing also the results within different approaches.

In a followup paper [27], we consider a (small) temperature

bias as the driving force and in this way extend our study to

linear thermoelectric properties of molecular devices. Such

devices are considered to be promising building blocks for

waste heat conversion and cooling on the molecular level

[42,43]. Indeed, in Ref. [27], employing the NRG [44], we find

parameter regimes where the linear thermoelectric response

through such a device is significantly enhanced.

In the near future we plan to further extend the FRG

to the Keldysh contour [21,29,45] in order to compute the

equilibrium spectral function without the need for an analytic

continuation. This will in addition enable us to investigate the

nonlinear (finite voltage and temperature bias) thermoelectric

transport properties of molecular devices described by the

SAHM.
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APPENDIX A: NUMERICAL IMPLEMENTATION OF

THE FLOW EQUATIONS

To solve the coupled differential Eqs. (9) and (10), first

we discretize the Matsubara frequency. In the light of the

emergent low-energy scale, we use the following logarithmic

grid to resolve the low-frequency regime better

νk = �
2k − Ntot

Ntot

exp

{

|Ntot − 2k| − Ntot

S

}

, (A1)

with k = 0,1, · · · Ntot. It distributes Ntot + 1 frequencies sym-

metrically around zero (Fermi level) in interval [−�,�].

With parameter S, we can control the concentration of

points around zero. We choose the parameters such that the

desired convergence (10−10 in units of ω0) is achieved. Linear

interpolation is used to evaluate the feedbacks ǫ
(i
) and

γ 
(i
) on the right-hand side of Eqs. (9) and (10). The set

of 2(Ntot + 1) differential equations can then be solved using

standard adaptive routines.

APPENDIX B: PHONON PARAMETERS

The minimum number of phonons required to resolve

the low-energy behavior of the system depends on the

strength of the electron-phonon coupling. Figure 5 shows the

convergence of the effective tunneling rate with the number

of phonons retained. We used Nb = 40 phonons throughout,

which suffices to obtain converged results for all parameters

used.

FIG. 5. The ratio of the effective tunneling rate Ŵeff to the bare

value Ŵ as a function of Nb for different electron-phonon couplings

in the antiadiabatic limit (ω0 = 100Ŵ).

FIG. 6. Comparison of the molecular spectral function obtained

from perturbation theory (solid lines) and NRG (dashed lines). (a)

shows the spectral function at the particle-hole symmetric point ǫ0 =
Ep for different Ŵ/ω0 at a fixed electron-phonon coupling λ = 0.7ω0

as a function of ν/Ŵ. Note the logarithmic x-axis scale. (b) depicts

the spectral function at different gate voltages for ω0 = 1.5Ŵ and

λ = 0.5ω0 as a function of ν/ω0.

195155-9



A. KHEDRI, T. A. COSTI, AND V. MEDEN PHYSICAL REVIEW B 96, 195155 (2017)

APPENDIX C: NRG AND PERTURBATION THEORY

COMPARISONS FOR THE T = 0 SPECTRAL FUNCTION

In the FRG approach, as formulated here, we have access

to the propagator of the molecular level only in Matsubara

space and hence in order to obtain its spectral function, we

have to perform an analytic continuation to the real axis; this

constitutes an ill-posed problem. It becomes an obstacle as

the self-energy at the end of the RG flow is known only

numerically. This problem was avoided in the calculation of

the conductance in Sec. III C by using a continued fraction

expansion of the Fermi function. While we can obtain results

for spectral functions within FRG by performing the analytic

continuation numerically via a Páde approximation, we found

this to be a quite unstable procedure in the sense that the results

strongly depend on the number of data points and the frequency

grid. An alternative, avoiding analytic continuation altogether,

which we plan to follow in the future, is to use FRG within

the Keldysch formalism, which would also allow accessing

nonequilibrium [21,29,45]. In order, nevertheless, to compare

our results for NRG spectral functions with another method,

we show here comparisons to lowest order perturbation theory.

Figure 6(a) shows the comparison of the spectral function

computed within NRG and perturbation theory at particle-

hole symmetry as we go from the adiabatic limit to the

antiadiabatic one. We see that the central peak gets narrower,

reflecting the suppression of tunneling processes. In addition,

distinctive satellite peaks at multiples of ω0 start to form. In the

antiadiabatic limit, the width of the spectral function calculated

from the two approaches do not quite match in agreement to

our previous discussion of the effective tunneling coupling Ŵeff

[see Fig. 2(b)].

As discussed in connection with Eq. (15) the perturbative

retarded self-energy shows spurious logarithmic divergencies

as ν = ±ω0. These lead to zeros of the spectral function

which manifest as rather sharp dips in Fig. 6. These sharp

features are artifacts of the perturbation theory and are absent

in the NRG results. Similar artifacts of perturbation theory

were found for the spinful Anderson-Holstein model by

comparison to spectral functions obtained from Keldysh FRG

(in equilibrium) [21]. For ǫ0 > Ep (ǫ0 < Ep) the central peak,

located at ν = 0 for particle-hole symmetry, is shifted to

the right (left). This effect is captured rather accurately by

perturbation theory for Ep/Ŵ < π/2 [Fig. 6(b)].
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