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We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a

single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of

strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We

also compare our results, at weak to intermediate coupling, with those obtained by employing the functional

renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage

at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an

interesting interplay between electrical and thermal transport. We explore different parameter regimes and

identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly

enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon

coupling and in the antiadiabatic regime.
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I. INTRODUCTION

Molecular quantum dots can be considered as potential

candidates for the interconversion of heat and electrical energy,

with possible applications to cooling or energy harvesting

at the nanoscale [1]. From this perspective, studying the

thermoelectric transport through such nanostructures is of

crucial importance as it can help us to identify scenarios for

which the thermoelectric efficiency can be enhanced. However,

there are both experimental [2] and theoretical [3] challenges in

understanding the thermoelectric properties of such systems.

On the experimental side there is the technical challenge of

applying a small temperature gradient across a nanoscale

device and measuring the resulting thermovoltage [2], while

on the theoretical side a major challenge is the inclusion

of correlation effects in the calculation of thermoelectric

transport. Interactions such as the on-site Coulomb repulsion

or the local electron-phonon interaction are known to be

important for nanoscale systems. For example, the Kondo

effect [4] can lead to a drastic modification of the low-

temperature conductance of molecular junctions [5].

As correlation effects have prominent consequences on

the transport properties of molecular quantum dots, we need

sophisticated many-body methods in order to address them

in a satisfactory manner. The numerical renormalization

group (NRG) provides an accurate nonperturbative description

of these properties in all parameter regimes and over the

whole temperature range [6–9]. It can deal with arbitrarily

complicated local interactions, including local Coulomb and

electron-phonon interactions. Within the framework of the

single-impurity Anderson model, NRG has been applied

to study the thermoelectric transport properties of strongly

interacting quantum dots for both repulsive [10] as well as

attractive Coulomb interactions [11] on the dot. Attractive

interactions, in particular, were found to provide a mechanism

for enhanced thermoelectric power and efficiency in molecular

quantum dots [11]. The effect of a short-range Coulomb

interaction at the contact points between the dot and the leads

(interacting resonant level model) has also been studied within

the approximate functional renormalization group method

(FRG), both in and out of equilibrium (steady state) [12].

In the quest to find general criteria for the best ther-

moelectric material, Mahan and Sofo [13] realized that a

narrow distribution of the spectral weight of the quasiparticles

involved in the transport can result in a substantial thermo-

electric efficiency. At first glance, repulsive interactions on a

quantum dot, resulting in a sharp Kondo resonance, seem to

be a realization of such a situation. However, the spin Kondo

resonance is generally well pinned fairly close to the Fermi

level, and inducing some asymmetry in the spectral function

to enhance the low-temperature Kondo-induced thermopower

either by applying a gate voltage or an external magnetic

field turn out to have small effects [10,14], at least within

the simplest model, the spin degenerate Anderson impurity

model.1 The charge Kondo physics realized in quantum dots

with attractive interaction, on the other hand, can result in

significant enhancement of the Seebeck coefficient through a

large polarization of the spectral function caused by a small

charge splitting (gate voltage) [11].

In this paper, we explore a different route to enhanced

thermoelectric efficiency by considering the effects not of local

Coulomb correlations, but of local vibrational modes of the

molecular device. As vibrations are inevitable features of real

molecular quantum dots [5], we want to identify the signatures

of the vibrational modes on the linear transport properties

through such devices and also characterize the regime of

parameters for which vibrational effects lead to enhanced

thermoelectric efficiency. For this purpose we take the spinless

1Orbitally degenerate Anderson models, used to describe heavy

fermion materials, can result in a larger asymmetry of the Kondo

resonance about the Fermi level and consequently can have a larger

Kondo-induced thermopower at low temperatures, see Refs. [50] and

[51].
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Anderson-Holstein model as a simple model of a molecular

junction and investigate its linear thermoelectric properties at

finite temperatures within the NRG. Since the latter approach is

nonperturbative in all interactions [9], it includes all tunneling

processes between the dot and the leads and can therefore

be used to access both the low-temperature strong-coupling

regime at T ≪ Ŵeff and the high-temperature perturbative

regime T ≫ Ŵ > Ŵeff , where Ŵeff < Ŵ is the renormalized tun-

neling rate between the molecular quantum dot and the leads

and Ŵ is the bare one (see Sec. II for the precise definitions).

In addition, at weak to intermediate electron-phonon coupling,

we compare the transport coefficients calculated within NRG

with those obtained from FRG.

Many studies have focused attention on the spinful version

of the Anderson-Holstein model [15,16], which includes a

local Coulomb repulsion on the dot and on the resulting com-

petition between Kondo physics and electron-phonon effects.

For this model, and variants thereof [1,17,18], a large number

of results have been obtained, including the linear [19] and

nonlinear [20–26] electrical conductance, the thermopower

in the perturbative high-temperature limit T ≫ Ŵ [17], and

other thermoelectric properties [27–30]. In contrast, previous

studies of the spinless Anderson-Holstein model have mainly

focused on renormalization effects on the low-energy scale

[31–34] and on the electrical conductance [35–38]. To the best

of our knowledge, the effects of electron-phonon coupling

on the other transport coefficients (thermopower, thermal

conductance) and on the dimensionless figure of merit as well

as the Lorenz number have not been previously addressed.

The main aim of the present paper is to fill this gap and to

elucidate in detail the signatures of phonon-assisted tunneling

in thermoelectric properties, without the added complication

of Kondo physics in the spinful version of this model.

The outline of the paper is as follows: In Sec. II we introduce

the model, outline very briefly the NRG and FRG methods, and

describe how finite temperature transport is calculated within

these approaches. A more extensive description of the methods

themselves in the context of the present model is given in

Ref. [34]. While in the latter paper, following the pioneering

study of Ref. [33], we elucidated in detail the evolution of

the low-energy scale of the model from the adiabatic to the

antiadiabatic regime and from weak to intermediate electron-

phonon couplings, using NRG, FRG, and perturbation theory,

and compared also the T = 0 spectral functions within these

methods, in the present paper we focus our attention on finite-

temperature thermoelectric transport properties for molecular

quantum dots strongly coupled to leads. Our results for these,

at temperatures above and below the relevant low-energy

scale Ŵeff , are presented in Sec. III, and we conclude with an

outlook in Sec. IV. In the Appendixes, we describe the details

of the FRG calculations for finite-temperature thermoelectric

transport (Appendix A), indicate the convergence tests used for

the NRG calculations (Appendix B), present some additional

results for the dependence of the dimensionless figure of merit

on the phonon frequency (Appendix C), and show results

for the coupling strength, temperature, phonon frequency,

and gate voltage dependence of the molecular dot spectral

function (Appendix D). For completeness, and to illustrate the

applicability of the NRG approach also in the high-temperature

perturbative limit at T ≫ Ŵ > Ŵeff , we discuss in Appendix E

the evolution of the thermopower (versus gate voltage) from

its high-temperature perturbative limit to its low-temperature

strong-coupling behavior at T � Ŵeff .

II. MODEL, METHODS, AND TRANSPORT

CALCULATIONS

We focus on the simplest possible model to capture the

vibrational effects of a molecule in a tunnel junction, the so-

called spinless Anderson-Holstein model,

H =
2

∑

α=1

∑

k

εkc
†
α,kcα,k +

t
√

Nsites

2
∑

α=1

∑

k

(d†cα,k + H.c.)

+ ǫ0d
†d + ω0b

†b + λd†d(b† + b), (1)

where ǫ0 is the energy of the molecular level, ω0 is the local

phonon frequency, λ is the strength of the electron-phonon cou-

pling, and t is the tunneling amplitude to the two leads, each of

which is represented by a one-dimensional tight-binding chain

with Nsites lattice sites. Due to polarization effects induced by

the electron-phonon interaction, the particle-hole symmetric

point of the Hamiltonian is shifted from the Fermi level

ǫ0 = ǫF = 0 to ǫ0 = EP , where Ep = λ2/ω0 is the polaronic

shift.2Ep/ω0 may also be interpreted as the average number of

phonons involved in the formation of a local polaron [32,39].

The quantity ε̃0 = ǫ0 − Ep is a measure of the deviation of

the local level position from its particle-hole symmetric value

and can be regarded as a gate voltage −eVg = ε̃0. We shall

henceforth parametrize all results by ε̃0 rather than the bare

level position ǫ0. We shall consider the reservoirs (leads) to be

structureless with a constant density of states ρ0(ω) = 1/(2D)

with D = 1 the half bandwidth. The molecular level in (1)

couples to the left and right reservoirs with equal strength,

resulting in a bare total level width of Ŵ = 2πρ0t
2. We use

Ŵ = 10−4D in all calculations. The low-temperature behavior

of this model has been studied in depth in Refs. [32] and

[33], and also in our previous work where we used NRG and

FRG [34], and which we here extend to finite temperature

transport. Due to its simplicity, the spinless Anderson-Holstein

model is only expected to qualitatively capture some aspects

of a real molecular quantum dot at low temperatures. At

higher temperatures (e.g., at T ≫ max{Ŵ,ω0}), additional

complexities, not contained in the above simple model, such

as additional molecular levels or anharmonic effects, may

become important and invalidate even a qualitative description

in terms of the spinless Anderson-Holstein model. Hence, we

will mainly focus on low temperatures, where also the most

interesting many-body effects manifest themselves.

We are generally interested in the flow of charge and heat

through a vibrating molecule coupled to reservoirs held at

different temperatures and chemical potentials. In the linear

response regime, all the transport coefficients of the model (1)

can be expressed in terms of the moments of the molecular dot

2Under the particle-hole transformation d → d†, b → −b − λ/ω0

with particle-hole symmetric leads we have that H (ǫ0) → H ′ =
H (2Ep − ǫ0) + (ǫ0 − Ep), so for ǫ0 = Ep, H = H ′.
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spectral function A(ν) [40],

In(T ) = −πŴ

∫ ∞

−∞
dννnA(ν)(∂νf )T , (2)

where n = 0,1,2 and f (ν) is the Fermi function at tem-

perature T . In particular, the electrical conductance G(T ),

thermoelectric power (Seebeck coefficient) S(T ), and the

electronic contribution to the thermal conductance κe(T ) can

be calculated via

G(T ) =
e2

h
I0(T ), (3)

S(T ) = −
1

e

I1(T )

T I0(T )
, (4)

κe(T ) =
1

hT

[

I2(T ) −
I 2

1 (T )

I0(T )

]

, (5)

with e and h denoting the electric charge and Planck’s constant,

respectively.

Within the NRG approach to Eq. (1), described in more

detail in Ref. [34], one obtains the eigenstates and eigenvalues

of H on all energy scales by an iterative diagonalization proce-

dure involving a set of finite-size (or truncated) Hamiltonians

HM , M = 0,1, . . . . From these, one can then construct all

equilibrium thermodynamic, dynamic, and linear transport

quantities [6–9]. Specifically, we calculate the nth moment

of the spectral function (2) at finite temperatures following the

best shell approach described in Refs. [41] and [42], namely,

at temperature T , we find the corresponding best shell M and

use the information from this shell to evaluate

In(T ) =
πŴ

ZM (T )

Ns
∑

l,l′=1

| 〈l′| d† |l〉 |2

e−βEM
l + e−βEM

l′

(

EM
l − EM

l′

)n
. (6)

In the above, ZM is the partition function associated with the

truncated Hamiltonian HM for a Wilson chain of length M at

an inverse temperature β = 1/T with {EM
l } the set of the Ns

lowest-lying eigenvalues ofHM and {|l〉} the corresponding set

of eigenvectors. In practice, we use a logarithmic discretization

parameter of � = 4 and average the results over Nz = 4

realizations of the bath [41,43].

The Matsubara FRG formalism discussed in our previous

work can be extended to finite temperatures following the

procedure presented in Ref. [44]. Within first-order truncated

FRG, we calculate the self-energy �(iνn) at fermionic Mat-

subara frequency νn up to linear order in the effective-phonon-

mediated electron-electron interaction (∝ λ2). However, due

to the RG resummation, the results go well beyond the lowest

order perturbation theory and also they preserve the particle-

hole symmetric properties, in contrast to plain perturbation

theory. The technical details of the method are discussed in

Appendix A. Knowing the molecular dot propagator

Gmol(iνn) = [iνn − ǫ0 + iŴ sgn(νn) − �(iνn)]−1, (7)

we use the continued fraction representation of the Fermi

function to calculate the nth moment of the spectral function

without the analytic continuation to the real axis,

In = (i)n−1 πŴ

β

Mp
∑

p=1

∑

s=±
Rp∂ν[νnG(iν)]

∣

∣

ν=s
zp

β

+ Ŵδn,2



Ŵ −
2π

β

Mp
∑

p=1

Rp



, (8)

with Mp poles at positions ±izp/β and residues Rp calculated

as proposed in Refs. [45] and [46]. At low temperatures, we

can also calculate the moments of the spectral function using

the Sommerfeld expansion (see Appendix A) [47].

III. RESULTS

In Sec. III A we present results for the temperature

dependence of the various transport coefficients Eqs. (3)–(5) of

the spinless Anderson-Holstein model for different parameters

(λ/ω0, ε̃0/Ŵ, and ω0/Ŵ), while in Sec. III B we likewise

present results for the temperature and parameter dependence

of the power factor, the Lorenz number, and the figure of merit.

As all the mentioned thermoelectric quantities are related to

the spectral function [see Eqs. (3)–(5)], we trace back some of

the trends to the behavior of the molecular spectral function

presented in Appendix D.

Throughout this section, we show the aforementioned quan-

tities as a function of the reduced temperature T/Ŵeff , where

Ŵeff < Ŵ is the renormalized low-energy scale describing the

rate at which tunneling processes occur between the dot and

the leads at zero gate voltage and zero temperature [34].

As in Ref. [34], we define Ŵeff in terms of the local T = 0

charge susceptibility at zero gate voltage via Ŵeff = 1/πχc,

where χc = − dnd (ε̃0)

dε̃0
|ε̃0=0, and nd (ε̃0) is the occupancy of

the molecular level. This emergent low-energy scale Ŵeff ,

the phonon frequency ω0, and the gate voltage ε̃0 are the

competing scales and they play a crucial role to understand

the thermoelectric transport.

In the following, we shall also mainly be interested in the

antiadiabatic regime ω0 ≫ Ŵ where renormalization effects

are most pronounced. In this case we have Ŵeff ≪ Ŵ ≪ ω0

and we expect interesting temperature dependences in several

temperature ranges defined by the disparate energy scales

Ŵeff,ω0 and the gate voltage ε̃0. In the adiabatic regime

ω0 ≪ Ŵ, the physics is that of the noninteracting model and

the only relevant temperature scale is Ŵ. In the antiadiabatic

limit, we discuss the comparison of NRG results with the

corresponding FRG ones for a given intermediate coupling

strength in Sec. III A 4. The values of Ŵeff/Ŵ for the couplings

used below are listed in Table I for the antiadiabatic case of

ω0 = 5Ŵ.

TABLE I. Dependence of Ŵeff/Ŵ on λ/ω0 for ω0 = 5Ŵ.

λ/ω0 0.2 0.5 1.0 2.0 3.0

Ŵeff/Ŵ 0.975 0.851 0.503 0.039 0.00025
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FIG. 1. (Solid lines) NRG results for the temperature dependence of the normalized electric conductance G/G0 (G0 = e2/h), the

thermopower S (in units of kB/e), and the normalized electronic contribution to the thermal conductance κe/Ŵ (in units of kB/h). (a)–(c)

Evolution with increasing electron-phonon coupling at a given phonon frequency ω0/Ŵ = 5 and level position ε̃0 = −Ŵ. Selected FRG results

(stars) [using Eq. (8)] at weak to intermediate couplings serve as checks on the NRG results. (d)–(f) Dependence on level position (gate voltage)

for a given coupling λ/ω0 = 2.0 and a fixed frequency ω0/Ŵ = 5. (g)–(i) Evolution from the adiabatic to the antiadiabatic limit for λ/ω0 = 2.0

and ε̃0 = −Ŵ.

A. Electrical conductance, thermopower,

and thermal conductance

In this section, we discuss the temperature dependence of

the transport coefficients as a function of the electron-phonon

coupling λ (at fixed gate voltage ε̃0 and phonon frequency

ω0), of the gate voltage ε̃0 (at fixed coupling λ and frequency

ω0), and of the phonon frequency ω0 (at fixed coupling

λ and gate voltage ε̃0). Results for these three cases are

shown in Figs. 1(a)–1(c), Figs. 1(d)–1(f), and Figs. 1(g)–1(i),

respectively, and will be discussed in Secs. III A 1–III A 3.

1. Varying the electron-phonon coupling

In Figs. 1(a)–1(c), we show the temperature dependence

of the transport coefficients for different electron-phonon

couplings at a fixed gate voltage, ε̃0 = −Ŵ, and a fixed phonon

frequency in the antiadiabatic regime, ω0 = 5Ŵ. 3

3The choice of these parameters is motivated by the desire, on the

one hand, to be away from the particle-hole symmetric point ε̃0 = 0,

since the thermopower vanishes exactly there, and, on the other hand,

to be in the antiadiabatic regime where, as explained above, the most

interesting temperature dependences are expected.

(a) Electrical conductance. While the electrical conduc-

tance G at T = 0 and particle-hole symmetry (ε̃0 = 0) is

pinned to its unitary value G0 = e2/h for all coupling strengths

[33], at finite gate voltage, as shown in Fig. 1(a), it is strongly

suppressed with increasing electron-phonon coupling. This

results from the suppression of the spectral weight at the

Fermi level with increasing coupling for finite gate voltages

[see Fig. 7(a) in Appendix D]. At finite temperatures, the

electrical conductance shows the typical behavior for resonant

tunneling at finite gate voltages, an activated behavior at low

temperatures with a maximum at a temperature related to

the gate voltage and a decrease beyond this temperature. At

still higher temperatures, as we approach the strong-coupling

regime (λ/ω0 > 1), the electrical conductance develops an-

other (small) maximum at a temperature related to ω0, showing

that electrons can also tunnel by creating phonon excitations.

The same observation holds for the thermal conductance, to

be discussed below, which also shows a peak at a temperature

T related to ω0 [Fig. 1(c)]. This feature arises from the

multiphonon satellite peaks at ν ≈ ε̃0 ± nω0,n = 1,2, . . . in

the spectral function at strong coupling (see Figs. 7(a) and 7(b)

in Appendix D and Ref. [38]).

(b) Seebeck coefficient. The Seebeck coefficient S, which

probes the asymmetry of the spectral function about the Fermi

level within the Fermi window |ω| � T , first increases with the
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strength of the electron-phonon coupling and then decreases

[see Fig. 1(b)], achieving a maximum at λ/ω0 ≈ 2 for the cho-

sen ω0/Ŵ = 5. We may qualitatively understand these trends

from the dependence of the spectral function on the coupling

strength in Fig. 7(a) of Appendix D as follows: at small values

of the coupling, most weight in the spectral function is carried

by the central peak (located at ν ≈ ε̃0) close to the Fermi level,

resulting in a small asymmetry in the spectral function and a

correspondingly small thermopower. Increasing the coupling

to values of order λ/ω0 ≈ 1 results in a gradual transfer of

spectral weight from the central peak to the phonon satellite

peaks at finite frequency. This initially results in an increased

asymmetry of the spectral function, since only the lowest

phonon satellite peaks are populated, resulting in the observed

increase in the thermopower with increasing electron-phonon

coupling. Eventually, however, for λ/ω0 � 3, the higher-lying

multiphonon peaks become populated, resulting in a broad

distribution of the spectral function centered outside the Fermi

window and the thermopower decreases again. We see that

at some intermediate coupling (λ/ω0 ≈ 2.0) the two trends

in the spectral function described above compensate each

other and we achieve the maximum Seebeck coefficient at this

strength of the electron-phonon coupling. For the parameters

used in Fig. 1(b), we estimate a maximum Seebeck coefficient

of Smax = S(T ≈ 7Ŵeff) ≈ 2kB/e = 172µV/K , close to the

optimal value of 207µV/K found by Sofo and Mahan for a

bulk thermoelectric with a δ function quasiparticle density of

states [13].4

(c) Thermal conductance. The electronic contribution to

the thermal conductance exhibits two peaks, as shown in

Fig. 1(c). The first peak occurs at temperatures comparable to

the renormalized tunneling rate Ŵeff and reflects the possibility

of heat transport via resonant tunneling. For sufficiently

strong couplings (λ/ω0 > 2), this low-energy peak becomes

irrelevant, a consequence of the decrease in the height and

width of the low-energy quasiparticle peak upon increasing

the coupling strength [see inset to Fig. 7(a) in Appendix

D]. The second peak occurs at a temperature related to

the phonon frequency ω0: it reflects the onset of inelastic

scattering processes, which become relevant when the energy

of the electrons is sufficient to create or annihilate one or

several phonons. The temperature of this peak position for

coupling strengths λ/ω0 = 3,2,1, and 0.5 is estimated roughly

to be 4.8ω0, 2.2ω0, 0.75ω0, and 0.45ω0, respectively. For

the smallest coupling shown (λ/ω0 = 0.2), it merges with

the lowest peak at T ≈ 0.12ω0 ≈ 0.6Ŵeff . Note also that the

position of the second peak in κe(T ) correlates with but is not

identical to that in G(T ).

2. Varying the gate voltage

Having seen that in the antiadiabatic regime (ω0 = 5Ŵ), and

for ε̃0 = −Ŵ, the thermopower achieves its maximum value at

4Note, however, that in Ref. [13], the value S = 207µV/K was

obtained by optimizing the dimensionless figure of merit, including

also the lattice contribution to the thermal conductance. They

show that the corresponding optimal value for the position of the

quasiparticle peak (gate voltage) is ±2.4kBT , close to what we found,

ε̃0/Tmax = −25Ŵeff/(10Ŵeff) = −2.5.

a rather strong electron-phonon coupling λ/ω0 = 2, we want

to now keep this optimal coupling strength (and ω0 = 5Ŵ)

fixed and investigate further the effect of the gate voltage on

the temperature dependence of the various transport properties

[Figs. 1(d)–1(f)].

(a) Electrical conductance. As we increase the gate

voltage, starting from |ε̃0/Ŵ| ≪ 1, with |ε̃0| < Ŵeff , the

low-temperature electrical conductance is only moderately

suppressed while the high-temperature conductance remains

largely unaffected [see Fig. 1(d)]. Further increasing the gate

voltage such that |ε̃0| > Ŵeff leads to an activated behavior

of the conductance, with a maximum at a low temperature

which approximately scales with the gate voltage. Further

increase of the gate voltage suppresses the low-temperature

conductance and the maximum further. The second peak

in G(T ) at higher temperatures, which results from phonon

excitations, is independent of the gate voltage.

(b) Seebeck coefficient. For the Seebeck coefficient, the ef-

fect of increasing the gate voltage away from the particle-hole

symmetric point is to first enhance S(T ), but for sufficiently

large gate voltages |ε̃0| ≫ Ŵeff there is a decrease in S(T )

[see Fig. 1(e)]. The position of the maximum approximately

correlates with ε̃0 [compare with the position of the lowest

peak in G(T ) in Fig. 1(d)]. These trends in S(T ) for varying

gate voltage can be qualitatively understood as resulting from

a compromise between an increase in the asymmetry of the

spectral function and a decrease in the magnitude of the

spectral function as we move ε̃0 further away from the Fermi

level, resulting in a maximum thermopower for the value

ε̃0 = −Ŵ [see Fig. 1(e) and the spectral function in Fig. 7(d)

of Appendix D].

(c) Thermal conductance. For the thermal conductance,

shown in Fig. 1(f), we find similar trends in the gate voltage de-

pendence as in the electrical conductance: a high-temperature

peak at a temperature related to ω0, which is independent of

the gate voltage, and a much smaller low-temperature peak.

This low-temperature peak lies at T ≈ Ŵeff for |ε̃0/Ŵeff| ≪ 1.

With increasing gate voltage |ε̃0/Ŵeff| ≫ 1 it shifts to higher

temperatures (correlating with the gate voltage), becomes

suppressed, and eventually merges with the high-temperature

peak [see inset to Fig. 1(f)].

3. Varying the phonon frequency

Finally, in Figs. 1(g)–1(i), we investigate the effect of the

phonon frequency ω0/Ŵ on the transport properties, keeping

now the optimal coupling strength (λ/ω0 = 2) and the optimal

gate voltage (ε̃0/Ŵ = −1) found above. A largely monotonic

trend in the transport properties is seen at essentially all

temperatures as we go from the adiabatic (ω0 ≪ Ŵ) to

the antiadiabatic limit (ω0 ≫ Ŵ). We note here that while

ω0 = Ŵ is usually taken as the crossover scale from the

adiabatic to antiadiabatic behavior, recent studies [33,38] show

that ω0 = Ŵeff is a more appropriate definition. For strong

coupling λ/ω0 ≫ 1, this extends the antiadiabatic regime

to significantly lower phonon frequencies. For the results

presented below, and those in Sec. III B 3, this means that

the actual crossover scale between the adiabatic and the

(extended) antiadiabatic regime corresponds to ω0 = 0.4Ŵ

[when Ŵeff(λ/ω0 = 2) = 0.4Ŵ = ω0] and not ω0 = Ŵ.
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(a) Electrical conductance. As we increase the phonon

frequency, the low-temperature enhancement of the electrical

conductance through the resonant level is suppressed since the

resonant tunneling amplitude Ŵeff is reduced with increasing

ω0 [see Fig. 1(g)]. At higher temperatures, a phonon-assisted

peak develops in the conductance for large ω0/Ŵ.

(b) Seebeck coefficient. Figure 1(h) shows the monotonic

enhancement of the Seebeck coefficient on increasing ω0/Ŵ

in the (extended) antiadiabatic regime ω0 � 0.4Ŵ and a small

monotonic suppression in the adiabatic regime. The mono-

tonically increasing Seebeck coefficient can be qualitatively

understood from the behavior of the spectral function with

increasing phonon frequency, see Fig. 7(c) of Appendix D.

With increasing ω0/Ŵ, the lowest energy quasiparticle peak in

the spectral function sharpens, becoming more delta-function-

like, while remaining asymmetric and located at ν ≈ ε̃0 [see

Fig. 7(c) in Appendix D]. This sharp resonance leads to

the monotonic enhancement of the Seebeck coefficient with

increasing ω0 ≫ Ŵ. Since the quasiparticle peak in the spectral

function occurs at the gate voltage, the temperature of the

maximum in the thermopower also correlates with gate voltage

and is almost independent of ω0 [see inset to Fig. 1(h)].

(c) Thermal conductance. From Fig. 1(i), we confirm once

more that the high-temperature maximum in the heat transport

at a temperature related to ω0 is due to the inelastic phonon-

assisted tunneling. On the other hand, the low-temperature heat

transport for T ≈ Ŵeff is strongly suppressed with increasing

phonon frequency [see inset to Fig. 1(i)]. This very small

low-temperature thermal conductance will play a role later

when we discuss the figure of merit.

4. Comparison with FRG

We briefly return to Figs. 1(a)–1(c) and comment on the

comparisons between the NRG (lines) and FRG (stars) results

shown there. The approach used for calculating these FRG

results is based on Eq. (8), which uses a continued fraction

expansion for the Fermi function appearing in the transport in-

tegrals. While this approach works well at all temperatures for

the lowest moment, and thus for the electrical conductance, and

for couplings up to order λ/ω0 ≈ 1 [see Fig. 1(a)], calculating

the higher moments within this approach is more problematic.

The reason is that the first and second moments involve the

derivative of the Green’s function [see Eq. (7)]. This means

that the interpolation scheme used to calculate the transport

properties within the FRG becomes increasingly sensitive with

increasing temperature when the spacing between Matsubara

frequencies becomes larger. We have tried the Páde approxima-

tion for the interpolation which turns out to be rather unstable.

Hence, for the thermopower and thermal conductance, a better

approach for the low-temperature regime, T ≪ Ŵeff , is to

calculate the transport integrals via a Sommerfeld expansion

to order T 2 (see Appendix A). Within this approach, the results

for the gate voltage dependence of the transport properties at

several low temperatures, shown in Fig. 2, agree very well

with those calculated from the NRG. These low-temperature

comparisons also provide an independent check on the NRG

calculations. Note that the deviations at higher temperatures,

e.g., for T/Ŵ = 0.2, which with Ŵeff = 0.81Ŵ corresponds to

T/Ŵeff ≈ 0.25, are expected since at such temperatures the

FIG. 2. (a) The normalized electrical conductance G/G0, (b) the

Seebeck coefficient S (in units of kB/e), and (c) the normalized

electronic contribution to the thermal conductance κe/Ŵ (in units

of kB/h) vs the dimensionless gate voltage ε̃0/Ŵ for various

temperatures in the antiadiabatic limit (ω0/Ŵ = 20) for λ/ω0 = 0.5.

The solid lines represent the NRG data and the stars are calculated

with FRG (using the Sommerfeld expansion).

neglected higher-order terms in the Sommerfeld expansion

will start contributing significantly.

B. Power factor, figure of merit, and Lorenz number

To study the interplay between heat and charge transport in

more detail, we discuss the temperature dependence of some of

the derived thermoelectric quantities such as the power factor

PF0, the dimensionless figure of merit ZT0, and the Lorenz

number L, defined as

PF0(T ) = S2(T )G(T ), (9)

ZT0(T ) =
G(T )S2(T )T

κe(T )
, (10)

L(T ) =
κe(T )

T G(T )
. (11)

As in Sec. III A, we shall discuss the temperature depen-

dence of these quantities for varying electron-phonon coupling

λ (at fixed gate voltage ε̃0 and phonon frequency ω0), gate

voltage ε̃0 (at fixed coupling λ and frequency ω0), and phonon

frequency ω0 (at fixed coupling λ and gate voltage ε̃0).

Results for these three cases are shown in Figs. 3(a)–3(c),

Figs. 3(d)–3(f), and Figs. 3(g)–3(i) and are discussed in

Secs. III B 1–III B 3.
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FIG. 3. The power factor PF0 (in units of k2
B/h), the Lorenz number L (in units of k2

B/e2), and the dimensionless figure of merit ZT0

vs the reduced temperature T/Ŵeff : (a)–(c) for different electron-phonon coupling for a given phonon frequency ω0/Ŵ = 5 and gate voltage

ε̃0 = −Ŵ, (d)–(f) at different gate voltages for a given coupling λ/ω0 = 2.0 and a fixed frequency ω0/Ŵ = 5, and (g)–(i) from the adiabatic to

the antiadiabatic limit for a λ/ω0 = 2.0 and ε̃0 = −Ŵ.

1. Varying the electron-phonon coupling

Figures 3(a)–3(c) show the temperature dependence of

PF0, ZT0, and L for different electron-phonon couplings.

The power factor as well as the figure of merit exhibit a

maximum at a temperature that correlates with max{Ŵeff,|ε̃0|},
and this maximum is more significant for some rather strong

electron-phonon coupling λ/ω0 = 2 [see Figs. 3(a)–3(b)].5

This maximum is a manifestation of the resonant tunneling

and is suppressed as we approach the strong-coupling regime,

since the gate voltage becomes larger than the effective

tunneling rate. The Lorenz number at low temperatures (T ≪
max{Ŵeff,|ε̃0|}) takes the universal value L0 = π2k2

B/3e2,

reflecting the Wiedemann-Franz law. The latter states that the

ratio of the thermal conductance to the electrical conductance

is linear in temperature with proportionality constant L0.

In the noninteracting case (λ/ω0 = 0), as we increase the

temperature, the Lorenz number decreases monotonically.

However, in the presence of the phonon-assisted tunneling,

the Lorenz number exhibits one low-temperature and one

high-temperature maximum. The latter occurs at a temperature

5Note that we used reduced (and not absolute) temperature T/Ŵeff

in Figs. 3(a) and 3(b), so the position of the gate-voltage-related peak

shifts to higher T/Ŵeff with increasing λ due to the decrease of Ŵeff

with increasing λ.

related, but not equal, to the phonon frequency ω0. The position

of the maximum in the figure of merit coincides with the

minima in the Lorenz number, indicating temperatures for

which the charge transport dominates over heat transport

and thus causing enhanced thermoelectric efficiency. This

follows from ZT0 = S2/L, i.e., a strong violation of the

Wiedemann-Franz law indicated by L(T ) ≪ L0, together

with an enhanced thermopower S, favoring an enhanced

thermoelectric efficiency.

2. Varying the gate voltage

In Figs. 3(d)–3(f), we characterize the effect of the gate

voltage on the above quantities. If we apply gate voltages

well below or well above Ŵeff , the enhancement of the figure

of merit (and the power factor) becomes less substantial [see

Figs. 3(d)–3(e)]. It is interesting to note that for gate voltages

comparable to the effective tunneling rate, see Table I, the

temperatures at which the minimum Lorenz number is realized

extend to a rather broad region, as is shown in Fig. 3(f) for the

case ε̃0 = −0.01Ŵ.

3. Varying the phonon frequency

Finally, Figs. 3(g)–3(i) show the dependence of PF0, ZT0,

and L on ω0/Ŵ. As we approach the antiadiabatic limit,

the effective tunneling rate decreases and hence at a finite

gate voltage, the resonant tunneling is suppressed, resulting
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in a decrease of the electrical conductance. The monotonic

enhancement of the Seebeck coefficient [cf. Fig. 1(h)] is not

sufficient to compensate for the suppression of the electrical

conductance [Fig. 1(g)], and hence the power factor decreases

as we increase the phonon frequency [Fig. 3(g)]. The figure

of merit, on the other hand, increases monotonically with

the vibrational frequency once ω0 exceeds Ŵeff , i.e., in the

extended antiadiabatic limit [see Fig. 3(h) and the inset, and,

for more details, Fig. 6 of Appendix C]. The temperature

interval for which the enhancement of the figure of merit

is realized (and/or the plateaulike region for the minimum

Lorenz number) extends as we go to the antiadiabatic limit

[Figs. 3(h)–3(i)]. In short, in the antiadiabatic limit, when the

vibrations are much faster than the tunneling processes, for

temperatures Ŵeff < T < ω0, the figure of merit is significantly

enhanced and the Lorenz number is substantially suppressed

[Fig. 3(i)]. For ω0 = 5Ŵ, the maximum value of ZT0 is of

order 1 at T ≈ 0.6Ŵeff . The figure of merit continues to grow to

even higher values in the extreme antiadiabatic limit ω0 ≫ Ŵ,

eventually saturating in the limit ω0/Ŵ → ∞ [see Fig. 6 of

Appendix C]. However, at such high phonon frequencies,

additional vibrational modes or anharmonic effects, neglected

in our model, would play a role and invalidate the present

description. In addition, it should be noted that we have

neglected lattice phonons of the electronic leads in the

spinless Anderson-Holstein model and hence the computed

dimensionless figure of merit ZT0 is just an upper bound to

the true figure of merit ZT = S2GT/(κe + κl), where κl is

the contribution to the thermal conductance from phonons

in the leads and has been neglected here [11]. Therefore,

in comparing with actual experimental data, the trends that

we find may be relevant but not the exact values for the

dimensionless figure of merit.

Finally, we note also that while the power factor, useful in

cooling a hot source [48], is large at weak couplings [Fig. 3(a)],

low finite gate voltages [Fig. 3(d)], and in the adiabatic regime

[Fig. 3(g)], the figure of merit, useful in harvesting waste heat,

is largest at moderately strong couplings (λ/ω0 = 2), finite

gate voltages (ε̃0 = −Ŵ), and in the strongly antiadiabatic

regime (ω0 ≫ Ŵ).

IV. SUMMARY AND OUTLOOK

We studied the effect of the vibrational degrees of freedom

on the linear thermoelectric transport through a molecular

quantum dot described by the spinless Anderson-Holstein

model by using the NRG method. As an independent check, we

compared them to corresponding finite-temperature transport

calculations within the FRG approach for weak to intermediate

couplings at different gate voltages and in the antiadiabatic

regime. We found that the emergent low-energy scale Ŵeff and

the phonon-assisted tunneling play important roles in under-

standing the thermoelectric transport at finite temperatures. We

quantified the trends in the transport properties in the adiabatic

and antiadiabatic regimes. In the antiadiabatic regime, we

showed that strong electron-phonon coupling induces, at

finite gate voltages, an asymmetry in the spectral function.

This results in an enhancement of the Seebeck coefficient,

and thereby yields another route to enhanced thermoelectric

efficiency in molecular quantum dots with vibrational degrees

of freedom, which is akin to the Mahan-Sofo mechanism for

bulk thermoelectric materials.

Figures 4(a) and 4(b) summarize the parameter regimes for

which an enhanced dimensionless figure of merit is realized.

In Fig. 4(a), for a fixed gate voltage ε̃0/Ŵ = −1.0 and in

the antiadiabatic regime (ω0/Ŵ = 5.0), we see an enhanced

ZT0 � 1 for temperatures 0.3Ŵ � T � 0.7Ŵ and couplings

1.25 � λ/ω0 � 2.25. Using typical values for Ŵ = 10 meV

and ω0 = 5Ŵ = 50 meV [1], we find a temperature range of

30K � T � 70 K for enhanced thermoelectric efficiency. In

Fig. 4(b), we keep the coupling strength fixed to λ/ω0 = 2.0 (in

the optimal range) and look at the variation of ZT0 as a function

of the gate voltage and temperature. We see an enhanced figure

of merit ZT0 � 1 for temperatures 0.04Ŵ � T � 0.6Ŵ and

for gate voltages 0.08Ŵ � |ε̃0| � 1.6Ŵ, or upon using Ŵeff ≈
0.04Ŵ from Table I, for temperatures Ŵeff � T � 15Ŵeff , and

FIG. 4. (a) ZT0 vs the coupling strength and temperature for a fixed gate voltage ε̃0 = −Ŵ and phonon frequency ω0/Ŵ = 5.0. (b) ZT0 vs

the gate voltage and temperature for a fixed coupling strength λ/ω0 = 2.0 and phonon frequency ω0/Ŵ = 5.0. Vertical and horizontal dashed

lines in (b) indicate T = Ŵeff and |ε̃0| = Ŵeff , respectively.
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for gate voltages 2Ŵeff � ε̃0 � 40Ŵeff . These correspond to

temperatures and gate voltages in the ranges 4 K < T <

60 K and 0.8 meV < |ε̃0| < 16 meV, respectively, upon

using Ŵ = 10 meV and ω0 = 5Ŵ = 50 meV. We expect that

similar enhancements in ZT0 can be found within the spinful

Anderson-Holstein model in the regime of a weak local

Coulomb repulsion on the dot. For larger Coulomb repulsion,

we expect that spin Kondo physics will suppress the observed

enhancement in the thermoelectric efficiency.

In the future, we plan to include the repulsive electron-

electron interaction between the molecular dot and the leads in

a further step to make the model more realistic. As found earlier

[12], models with such short-range Coulomb interactions

exhibit in their nonequilibrium (steady-state) thermoelectric

transport some nontrivial and intriguing features leading to

an enhancement of their thermoelectric efficiency. In this

light, we plan also to go beyond linear response theory and

investigate nonequilibrium thermoelectric transport through a

molecular quantum dot, including vibrational and short-range

Coulomb terms within an FRG approach on the Keldysh

contour. The advantage of the latter, beyond being applicable

to both nonlinear and linear transport, is that it can be carried

out directly on the real energy axis, thereby avoiding problems

with the analytic continuation of numerical data.
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APPENDIX A: FRG AT FINITE TEMPERATURES

To set up FRG in Matsubara space at finite temperatures,

we use the cutoff function as has been introduced in Ref. [44]:

�T (|νn| − �) =











0 |νn| − � � −πT

1
2

+ |νn|−�

2πT
||νn| − �| < πT

1 |νn| − � � πT

. (A1)

Following the standard procedure within first-order truncated

FRG [34,49], we obtain coupled differential equations for the

real and the imaginary part of the self-energy [��(iνm) =
ǫ�(iνm) + iγ �(iνm)]:

∂�ǫ�(iνm) =
1

β
Re{S�(iνñ)}

∑

s=±
[U (iνm − siνñ) − U (0)],

(A2)

∂�γ �(iνm) =
1

β
Im{S�(iνñ)}

∑

s=±
sU (iνm − siνñ), (A3)

where ñ is the integer for which the corresponding Matsubara

frequency νñ ∈ (� − πT,� + πT ) at given temperature T

and a scale factor �. The effective phonon-mediated electron-

electron interaction is

U (iνn) = −
2ω0λ

2

ν2
n + ω2

0

, (A4)

and the single-scale propagator S�(iνñ) reads

S�(iνñ) =
iνñ + iŴ sgn(νñ)

[iνñ + iŴ sgn(νñ) − α(T ,�)��(iνñ)]2

×
�(πT − ||νñ| − �|)

2πT
, (A5)

with α(T ,�) = 1
2

+ |νñ|−�

2πT
∈ (0,1). The initial conditions at

� → ∞ are

ǫ�(iνn) = ǫ0 − Ep = ε̃0, γ �(iνn) = 0 ∀νn. (A6)

At the particle-hole symmetric point ǫ0 = Ep, the real part will

not flow, reflecting that the particle-hole symmetry is preserved

at any temperature for all scales �. We used standard adaptive

routines to numerically solve the flow equations.

At low temperatures T ≪ Ŵ, we can calculate the transport

integrals Eq. (2) using the Sommerfeld expansion

In = πŴ

[

Fn +
π2

3

F ′′
n

2!β2

]

, (A7)

where

Fn = δn,0

−1

π
Im{G(iν1)}, (A8)

F ′′
n =

2

π
δn,1Im

{

G2
mol(iν1)

}

(

1 − Im

{

d�(iνn)

dνn

∣

∣

∣

∣

ν1

})

+ δn,0

−1

π

[

2Im
{

G3
mol(iν1)

}

(

1 − Im

{

d�(iνn)

dνn

∣

∣

∣

∣

ν1

})2

+ Im
{

G2
mol(iν1)

}

(

Re

{

d2�(iνn)

dν2
n

∣

∣

∣

∣

ν1

})]

+ δn,2

−2

π
Im{Gmol(iν1)}, (A9)

with ν1 = π/β.

APPENDIX B: NRG PARAMETERS

We always check the convergence of the presented results

with respect to the number Nb of bosons kept. Figure 5 shows

an example for the extreme antiadiabatic regime, where the

phonon excitations are significant to capture the physics for

some rather strong electron-phonon coupling λ/ω0 = 2.0. One

sees that results for Nb = 40 are indistinguishable from those

for Nb = 80 at all temperatures. Note also that using a smaller

Ŵ = 10−5 did not require more than Nb = 40 phonons for

converged results.

APPENDIX C: TRENDS IN ZT0 VERSUS ω0/Ŵ FOR

STRONG COUPLING

For completeness, and in order to further elucidate on

the trends previously observed, we show results for the

dimensionless figure of merit as a function of ω0/Ŵ extending

up to very large ω0/Ŵ in Fig. 6. We see that while initially
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FIG. 5. The dimensionless figure of merit ZT0 vs reduced

temperature T/Ŵeff for different numbers of bosons and different

Ŵ/D deep in the antiadiabatic regime ω0/Ŵ = 103 for λ/ω0 = 2.0,

ε̃0 = −Ŵ, and illustrating the convergence with respect to the number

of bosons kept.

for ω0/Ŵeff � 1 the peak value of the dimensionless figure of

merit decreases with increasing ω0/Ŵ (see inset to Fig. 6),

for ω0/Ŵeff � 1 its peak value exhibits a monotonically

increasing behavior (main panel in Fig. 6). This maximum

value eventually saturates to approximately 35 for ω0/Ŵ ≫ 1.

This maximum is located at a temperature T/Ŵeff ≈ 30.

APPENDIX D: SPECTRAL FUNCTION

The thermopower directly probes the asymmetry of the

spectral function about the Fermi level, so the dependence of

this asymmetry on parameters such as the electron-phonon

coupling strength, the temperature, the phonon frequency, and

the gate voltage can give some qualitative insight into the

observed trends of the Seebeck coefficient. Hence, we discuss

these dependences in this Appendix.

Figures 7(a)–7(d) show the spectral function A(ν) vs ν upon

varying λ/ω0 (for ω0/Ŵ = 5 and T = 0), T/Ŵ (for λ/ω0 = 2

FIG. 6. The dimensionless figure of merit ZT0 vs the reduced

temperature T/Ŵeff for different ω0/Ŵ at ε̃0 = −Ŵ and λ/ω0 = 2.

The values of ω0/Ŵeff are also listed. The main panel shows the

monotonically increasing behavior of the peak value of ZT0 with

increasing ω0/Ŵ in the extended antiadiabatic regime (ω0/Ŵeff � 1),

while the inset shows the opposite behavior for ω0/Ŵeff � 1. The λ =
0 curve in the inset lies on top of the ω0/Ŵ = 0.01 curve, illustrating

that the noninteracting and adiabatic limits are almost identical.

and ω0/Ŵ = 5), ω0/Ŵ (for λ/ω0 = 2 and T/Ŵ = 0.4), and

ε̃0/Ŵ (for ω0/Ŵ = 5 and λ/ω0 = 2).

In Fig. 7(a), one sees how the asymmetry in the spec-

tral function develops with increasing λ/ω0 with additional

phonon satellite peaks appearing at λ/ω0 � 1. The resulting

asymmetry in the spectral function, with sharp peaks at

ν ≈ ε̃0 − ω0,ε̃0 − 2ω0, . . . , qualitatively explains the mono-

tonically increasing thermopower with increasing λ/ω0 � 2.

Eventually, however, for λ/ω0 � 2 these satellite peaks ac-

quire less weight and the first moment of the spectral function

starts to decrease, resulting in a reduction of the thermopower

at very strong coupling. This qualitatively explains the trends

seen in Fig. 1(b).

The spectral function shown in Fig. 7(a) is obtained by

broadening the discrete spectra with logarithmic Gaussians

using broadenings proportional to the excitation energies of

the delta peaks [9]. At strong coupling the phonon excitations

merge into a broad peak centered at a large negative frequency

for the broadening parameters used here. One can resolve

the individual satellite peaks under this broad feature by

further reducing the broadening, see Ref. [38]. However,

in the actual transport calculations reported in Sec. III, we

work directly with the discrete spectra using Eq. (6), and

the results for the transport properties do not depend on any

broadening procedure, which are hence highly accurate for all

temperatures [42].

For the optimal parameters of Fig. 7(b), the Seebeck

coefficient shows a maximum for Ŵeff � T � Ŵ, where the

asymmetric resonant tunneling is realized within the Fermi

window. As we increase the temperature further, the phonon

side peaks in the spectral function are increasingly broad-

ened, as shown in Fig. 7(b). In addition, the asymmetry

in the spectral function is reduced. The latter reflects the

fact that thermal excitations involving emission of phonons

(ν ≈ nω0) are becoming as relevant as those involving

absorption of phonons (ν ≈ −nω0) as the temperature is

increased.

Figure 7(c) shows the dependence of the spectral function

on phonon frequency for optimal coupling λ/ω0 = 2 and at

temperature T/Ŵ = 0.4 [where the Seebeck coefficient has

its maximum value for the case ω0/Ŵ = 5 in Fig. 1(e)]. For

this case of strong coupling, the spectral function retains

a large weight in the peak close to the Fermi level upon

increasing ω0/Ŵ [see also the inset to Fig. 7(c)]. This low-

energy peak, which can be identified with the quasiparticle

peak in the limit T → 0, remains pinned at the gate voltage

ε̃0 = −Ŵ and sharpens with increasing phonon frequency.

The resulting asymmetry explains the monotonic increase

of the low-temperature thermopower with increasing phonon

frequency in Fig. 1(h) for ω0 � Ŵeff . In addition, its pinning

at the gate voltage ν = ε̃0 = −Ŵ explains why the maximum

in the thermopower occurs at a temperature correlating with

the gate voltage and largely independent of ω0 [inset to

Fig. 1(h)].

Figure 7(d) shows the gate voltage dependence of the T = 0

spectral function. For |ε̃0/Ŵ| ≪ 1, the main contribution to the

low-temperature thermopower comes from the quasiparticle

peak at low energies, which is seen to be quite symmetrical

about the Fermi level, thereby resulting in a small ther-

mopower. Increasing ε̃0 shifts this peak away from the Fermi
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FIG. 7. The normalized spectral function πŴA(ν) vs frequency ν. (a) The coupling strength dependence of the T = 0 spectral function

for ε̃0 = −Ŵ and ω0 = 5Ŵ. (b) The temperature dependence of the spectral function for ε̃0 = −Ŵ, ω0 = 5Ŵ, and λ/ω0 = 2. (c) The (phonon)

frequency dependence of the spectral function for ε̃0 = −Ŵ, λ/ω0 = 2.0, and T/Ŵ = 0.4. (d) The gate voltage dependence of the T = 0

spectral function for ω0 = 5Ŵ and λ/ω0 = 2. We used NRG parameters � = 4 and Nz = 20. The spectral sum rule
∫ +∞

−∞ A(ν)dν = 1 is

satisfied numerically to within a few percent for all parameters and temperatures shown.

level, increasing the asymmetry of the spectral function within

the Fermi window and thereby increasing the thermopower.

Eventually, for sufficiently large gate voltage, most weight

will lie outside the Fermi window and the thermopower will

decrease. The optimal thermopower is found for ε̃0 = −Ŵ (for

the chosen ω0 = 5Ŵ and λ/ω0 = 2).

APPENDIX E: EVOLUTION OF THE THERMOPOWER

VERSUS GATE VOLTAGE FROM ITS

HIGH-TEMPERATURE PERTURBATIVE LIMIT TO ITS

LOW-TEMPERATURE STRONG-COUPLING LIMIT

In this Appendix, we present the gate voltage dependence of

the thermopower deep in the antiadiabatic limit ω0/Ŵ ≫ 1 for

different temperatures and show how it evolves as we approach

the nonperturbative low-temperature regime T � Ŵeff from

the high-temperature perturbative one D ≫ T ≫ Ŵ > Ŵeff .

The latter regime can also be accessed within a rate equation

approach, valid for weak lead-molecule couplings, in which

only sequential and cotunneling processes are included [17]. In

contrast, the NRG, which accounts for all tunneling processes,

is able to capture the whole temperature range.

Starting from low temperatures T = Ŵeff , one sees a single

peak in S(ε̃0) at a gate voltage related to the temperature (inset

to Fig. 8). This is similar to the low-temperature results in

the main text, see Fig. 2(b). For sufficiently high temperatures

T ≫ Ŵ > Ŵeff , and within a small temperature window 108 �
T/Ŵeff � 4 × 108 (corresponding to 0.04 � T/ω0 � 0.15), a

number of peaks appear in S, approximately separated by

integer multiples of ω0, which can be attributed to signatures

of molecular vibrations in the thermopower. This result,

for the spinless Anderson-Holstein model, is similar to that

found for the spinful Anderson-Holstein model (including a

local Coulomb repulsion) within the rate equation approach

of Ref. [17], and demonstrates the ability of the NRG to

access the high-temperature limit in addition to accessing

low temperatures. On further increasing the temperature, the

peaks in S become shoulders and eventually merge to form a

smooth hump whose height decreases with further increase of

temperature (not shown).

FIG. 8. Thermopower S vs the normalized gate voltage −ε̃0/ω0

for various temperatures, in the extreme antiadiabatic limit ω0/Ŵ =
4.0 × 107 and for a fixed electron-phonon coupling λ/ω0 = 2.0. The

inset shows S vs −ε̃0/Ŵeff for the five lowest temperatures of the

main panel. We choose Ŵ/D = 10−10 to resolve high-temperature

results more precisely. The renormalized tunneling rate is Ŵeff =
1.659 × 10−2Ŵ.
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