000840278 001__ 840278
000840278 005__ 20240625095030.0
000840278 0247_ $$2doi$$a10.1103/PhysRevLett.119.217202
000840278 0247_ $$2ISSN$$a0031-9007
000840278 0247_ $$2ISSN$$a1079-7114
000840278 0247_ $$2ISSN$$a1092-0145
000840278 0247_ $$2Handle$$a2128/15997
000840278 0247_ $$2pmid$$apmid:29219408
000840278 0247_ $$2WOS$$aWOS:000416029300002
000840278 0247_ $$2altmetric$$aaltmetric:29289637
000840278 037__ $$aFZJ-2017-07825
000840278 082__ $$a550
000840278 1001_ $$0P:(DE-Juel1)162337$$aChiesa, Alessandro$$b0$$eCorresponding author$$ufzj
000840278 245__ $$aMagnetic Exchange Interactions in the Molecular Nanomagnet Mn 12
000840278 260__ $$aCollege Park, Md.$$bAPS$$c2017
000840278 3367_ $$2DRIVER$$aarticle
000840278 3367_ $$2DataCite$$aOutput Types/Journal article
000840278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511881486_21605
000840278 3367_ $$2BibTeX$$aARTICLE
000840278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840278 3367_ $$00$$2EndNote$$aJournal Article
000840278 520__ $$aThe discovery of magnetic bistability in Mn12 more than 20 years ago marked the birth of molecular magnetism, an extremely fertile interdisciplinary field and a powerful route to create tailored magnetic nanostructures. However, the difficulty to determine interactions in complex polycentric molecules often prevents their understanding. Mn12 is an outstanding example of this difficulty: although it is the forefather and most studied of all molecular nanomagnets, an unambiguous determination of even the leading magnetic exchange interactions is still lacking. Here we exploit four-dimensional inelastic neutron scattering to portray how individual spins fluctuate around the magnetic ground state, thus fixing the exchange couplings of Mn12 for the first time. Our results demonstrate the power of four-dimensional inelastic neutron scattering as an unrivaled tool to characterize magnetic clusters.
000840278 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000840278 588__ $$aDataset connected to CrossRef
000840278 7001_ $$0P:(DE-HGF)0$$aGuidi, T.$$b1
000840278 7001_ $$0P:(DE-HGF)0$$aCarretta, S.$$b2
000840278 7001_ $$0P:(DE-HGF)0$$aAnsbro, S.$$b3
000840278 7001_ $$0P:(DE-HGF)0$$aTimco, G. A.$$b4
000840278 7001_ $$0P:(DE-HGF)0$$aVitorica-Yrezabal, I.$$b5
000840278 7001_ $$0P:(DE-HGF)0$$aGarlatti, E.$$b6
000840278 7001_ $$0P:(DE-HGF)0$$aAmoretti, G.$$b7
000840278 7001_ $$0P:(DE-HGF)0$$aWinpenny, R. E. P.$$b8
000840278 7001_ $$0P:(DE-HGF)0$$aSantini, P.$$b9
000840278 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.119.217202$$gVol. 119, no. 21, p. 217202$$n21$$p217202$$tPhysical review letters$$v119$$x1079-7114$$y2017
000840278 8564_ $$uhttps://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.pdf$$yOpenAccess
000840278 8564_ $$uhttps://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.gif?subformat=icon$$xicon$$yOpenAccess
000840278 8564_ $$uhttps://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840278 8564_ $$uhttps://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840278 8564_ $$uhttps://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840278 8564_ $$uhttps://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840278 909CO $$ooai:juser.fz-juelich.de:840278$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000840278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162337$$aForschungszentrum Jülich$$b0$$kFZJ
000840278 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000840278 9141_ $$y2017
000840278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840278 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000840278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2015
000840278 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2015
000840278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840278 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840278 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840278 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840278 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840278 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840278 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840278 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840278 920__ $$lyes
000840278 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000840278 9801_ $$aFullTexts
000840278 980__ $$ajournal
000840278 980__ $$aVDB
000840278 980__ $$aUNRESTRICTED
000840278 980__ $$aI:(DE-Juel1)IAS-3-20090406
000840278 981__ $$aI:(DE-Juel1)PGI-2-20110106