001     840278
005     20240625095030.0
024 7 _ |a 10.1103/PhysRevLett.119.217202
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/15997
|2 Handle
024 7 _ |a pmid:29219408
|2 pmid
024 7 _ |a WOS:000416029300002
|2 WOS
024 7 _ |a altmetric:29289637
|2 altmetric
037 _ _ |a FZJ-2017-07825
082 _ _ |a 550
100 1 _ |a Chiesa, Alessandro
|0 P:(DE-Juel1)162337
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Magnetic Exchange Interactions in the Molecular Nanomagnet Mn 12
260 _ _ |a College Park, Md.
|c 2017
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511881486_21605
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The discovery of magnetic bistability in Mn12 more than 20 years ago marked the birth of molecular magnetism, an extremely fertile interdisciplinary field and a powerful route to create tailored magnetic nanostructures. However, the difficulty to determine interactions in complex polycentric molecules often prevents their understanding. Mn12 is an outstanding example of this difficulty: although it is the forefather and most studied of all molecular nanomagnets, an unambiguous determination of even the leading magnetic exchange interactions is still lacking. Here we exploit four-dimensional inelastic neutron scattering to portray how individual spins fluctuate around the magnetic ground state, thus fixing the exchange couplings of Mn12 for the first time. Our results demonstrate the power of four-dimensional inelastic neutron scattering as an unrivaled tool to characterize magnetic clusters.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Guidi, T.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Carretta, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ansbro, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Timco, G. A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vitorica-Yrezabal, I.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Garlatti, E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Amoretti, G.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Winpenny, R. E. P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Santini, P.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1103/PhysRevLett.119.217202
|g Vol. 119, no. 21, p. 217202
|0 PERI:(DE-600)1472655-5
|n 21
|p 217202
|t Physical review letters
|v 119
|y 2017
|x 1079-7114
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/840278/files/PhysRevLett.119.217202.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840278
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162337
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21