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Abstract

The stochastic sampling method (StochS) is used for the analytic continuation of quan-
tum Monte Carlo data from the imaginary axis to the real axis. Compared to the
maximum entropy method, StochS does not have explicit parameters, and one would
expect the results to be unbiased. We present a very efficient algorithm for performing
StochS and use it to study the effect of the discretization grid. Surprisingly, we find that
the grid affects the results of StochS acting as an implicit default model. We provide a
recipe for choosing a reliable StochS grid.

To reduce the effect of the grid, we extend StochS into a gridless method (gStochS)
by sampling the grid points from a default model instead of having them fixed. The
effect of the default model is much reduced in gStochS compared to StochS and depends
mainly on its width rather than its shape. The proper width can then be chosen using
a simple recipe like we did in StochS.

Finally, to avoid fixing the width, we go one step further and extend gStochS to
sample over a whole class of default models with different widths. The extended method
(eStochS) is then able to automatically relocate the grid points and concentrate them in
the important region. Test cases show that eStochS gives good results resolving sharp
features in the spectrum without the need for fine tuning a default model.

vii






Zusammenfassung

Die Stochastische-Mittelungs-Methode (StochS) wird fiir die analytische Fortsetzung
der Quanten-Monte-Carlo-Daten von der imaginaren Achse zur reellen Achse verwen-
det. Im Vergleich zu Maximum-Entropie-Methode hat StochS keine expliziten Param-
eter, so dass man unbeeinflusste Ergebnisse erwarten wiirde. Wir stellen einen hochef-
fizienten Algorithmus fiir StochS vor und benutzen ihn, um der Einfluss des Gitters zu
analysieren. Uberraschenderweise finden wir, dass das Gitter die Ergebnisse von StochS
wie ein Default-Modell beeinflusst. Wir geben ein Rezept fiir die Wahl eines verlasslichen
StochS-Gitter an.

Um der Einfluss des Gitters zu reduzieren, erweitern wir StochS zu einer gitterlosen
Methode (gStochS), indem die Gitterpunkte geméfl einem Default-Modell gezogen wer-
den, anstatt sie a priori festzulegen. Der Einfluss des Default-Modells in gStochS ist im
Vergleich zu StochS stark reduziert und hangt hauptséchlich von seiner Breite, nicht der
Form ab. Die passende Breite kann dann mit einem einfachen Rezept gefunden werden,
ahnlich wie wir es fiir StochS entwickelt haben.

Schlielich gehen wir, um die Festlegung der Breite zu vermeiden, einen Schritt weiter
und erweitern gStochS durch die Mittelung tiber eine ganze Klasse von Default-Modellen
mit unterschiedlichen Breiten. Diese erweiterte Methode (eStochS) kann dann die Git-
terpunkte automatisch versetzen und in den wichtigen Bereichen konzentrieren. Testfalle
zeigen, dass eStochS gute Ergebnisse liefert, die scharfe Struktur des Spektrums repro-
duzieren kann, ohne dass eine Feinabstimmung eines Default-Modells notig wére.
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Introduction

Quantum Monte Carlo (QMC) methods often compute Green or correlation functions for
imaginary times or Matsubara frequencies. This data need to be analytically continued
to the real axis in order to extract the dynamical properties of the physical system of
interest. One example of analytic continuation is retrieving the spectral function A(w) at
real frequencies from the imaginary time Green function G(7) coming from continuous-
time QMC for DMFT. The Green and spectral functions are related by the following
relation

0) = [ 5 13 Alw), T (0.1)

where the upper (lower) sign is for the fermionic (bosonic) case and § = 1/T is the
inverse temperature. In general, the analytic continuation problem can be formulated
as a Fredholm integral equation of first kind

o(y) = / dr K (y,2)f(z) | 0.2)

where the left-hand side g(y) represents QMC data known numerically, while the integral
kernel K (y,x) is a continuous function known analytically. The goal is estimating the
function f(z), called the the model. Based on physical arguments, the model is always
a density-like function i.e. it should be non-negative and integrable. It even sometimes
satisfies few sum rules; e.g. the fermionic spectral function is normalized. These proper-
ties, especially the non-negativity, provide important prior information that help making
the analytic continuation easier.

In the presence of noise, solving the above integral equation is an ill-posed problem
with no unique solution. When computing the data g(y), oscillations and sharp features
in the model f(z) get smoothed and noise get damped due to the integration. The
inverse problem of reconstructing the model with its details, however, is difficult. With-
out regularization, small noise on the data gets extremely amplified leading to models
dominated by noise.

There are different approaches to tackle this problem; they differ by their assumptions,
quality and computational cost. The de facto standard is the maximum entropy method
(MaxEnt) which tries to find a model that balances between two terms: the fit to the
data and the entropy relative to some default model. MaxEnt is efficient and produces
good results in general [1]. However, it suffers from a smoothing effect, and it has
parameters that need tuning [2]. Recently, another promising approach, the stochastic
sampling method (StochS),! has gained momentum due to the increase in computational

!This method has different names in different papers: the stochastic method [3], statistical sampling
method [2] and average spectrum method [4].



Introduction

power. StochS averages over all non-negative models weighted by how well they fit the
data. It is more computationally demanding than MaxEnt, but it has the potential of
resolving sharp features and has no explicit parameters [2, 3, 4]. Stochastic sampling
approaches are the main subject of this thesis.

In chapter 1, we study the analytic structure of Green and correlation functions ex-
plaining the origin of the analytic continuation problem. We derive the relations between
the different Green and correlation functions and their spectral densities, and discuss
many of their properties.

In chapter 2, we use the singular value decomposition to characterize the ill-posedness
of the analytic continuation and why it is a challenging problem. We then present several
regularization methods and compare them showing that non-negativity constraints are
very helpful in solving the problem. We use non-negativity to develop a new regulariza-
tion method: perturbed data sampling (PDS). We have implemented these algorithms
as a toolbox of quick analytic continuation methods.

In chapter 3, we introduce Bayesian inference and formulate StochS and other meth-
ods in Bayesian terms. This provides a unified approach to the analytic continuation
problem and sheds light on the assumptions employed by each method. Then, we present
an efficient new algorithm for performing StochS: blocked modes sampling (BMS). In
comparison to earlier sampling algorithms, BMS reduces the computational times by
orders of magnitude. Using our fast algorithm, we find that StochS results depend on
the discretization grid which acts as an implicit default model. This effect has not been
discussed before in the literature. We study and explain the grid dependence and de-
velop a procedure for the proper choice of the grid. To minimize the grid effect, we
extended StochS into a gridless method (gStochS) by sampling the grid points explicitly
from a default model instead of being fixed. This allows the grid points to move to best
fit the data. We then extend gStochS further into eStochS to sample over a whole class
of default models.

In chapter 4, we apply StochS and its extensions to realistic test cases demonstrating
how to use them in practice. In appendix A, we give a general criterion for consistent
Bayesian analytic continuation and reformulate the different stochastic sampling meth-
ods and MaxEnt in terms of stochastic processes to put them on an equal footing. In
appendix B, we comment on the open problem of analytic continuation of non-diagonal
spectral functions.



1. Analytic Structure of Green and
Correlation Functions

In this chapter, we introduce the analytic continuation as a problem arising in condensed
matter physics. We start with a brief introduction to the mathematical ideas of analytic
functions and analytic continuation. The experiments of photoemission spectroscopy are
then used to motivate the need for Green functions. We study the analytic structure of
Green functions in both the time and frequency domains. Similarly, correlation functions
are motivated by linear response theory, which relates them to the responses of physical
systems to external perturbations. The analytic structure of correlation functions is
identical to that of bosonic Green functions, so we provide the mapping between the
two.

The analytic structure of both Green and correlation functions in the frequency do-
main shows that they are completely determined by their spectral densities. On the
other hand, quantum Monte Carlo (QMC) simulations compute Green and correlation
function values on the imaginary axis only. Determining the spectral function using
QMC data is the problem of analytic continuation. We derive the relation between the
two and show some useful properties of the spectral functions which provide important
prior information about the solution. Finally, we formulate the analytic continuation
problem as the mathematical problem of solving an integral equation whose unknown
function is density-like i.e. both non-negative and integrable.

1.1. Mathematical preliminaries

We call a complex function, f(z), analytic on an open set D if it can be written as a
convergent power series in the neighborhood of any point 2z, € D

f(z) = Zan(z —2zo)" .

Analytic functions are special because their values in a large domain are completely
determined by their values in any sub-domain. This follows directly from the identity
theorem

Identity Theorem. If two functions are analytic on some domain V, and they agree
on all points of an open subset! U C V, then they must agree on all points of V.

! This theorem can be further generalized to the case where U is any subset of V with an accumulation
point in V.
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Figure 1.1.: F(z) is the analytic continuation of f(z) to the larger domain V.

Therefore, if f is some analytic function on U, and F' is another analytic function on
V such that f(z) = F(z) for all z € U, then F is unique and is called the analytic
continuation of f to V.

An important consequence of the analytic continuation is the so-called permanence
of algebraic form [5]. This means that if an analytic function on the real axis f(z) is
represented by some algebraic expression (e.g. a power series), then by replacing the
real variable in this expression by a complex variable x — z, the function f(z) is the
unique analytic continuation of f(x) to the regions of the complex plane where that
expression is still well-defined. More generally, if two functions fi(x) and fo(z) satisfy
some algebraic relation, then their analytic continuations fi(z) and fo(z) satisfy this
relation in their common domain of analyticity.

1.2. Green functions

1.2.1. Motivation: photoemission spectroscopy

The well-known photoelectric effect refers to the phenomenon that materials emit elec-
trons when exposed to light of sufficiently high frequency. Photoemission spectroscopy
(PES) experiments exploit this effect to infer the electronic structure of materials by
measuring the energies of these emitted electrons. In such an experiment, a sample is
exposed to light of specific frequency. If the energy of a photon is larger than a minimum
threshold, it kicks an electron out of the sample, then a detector collects the ejected elec-
trons and measures their kinetic energy. The binding energy of the emitted electrons
can then be computed using conservation of energy. In angle-resolved PES, one also
measures the direction of the ejected electron which determines its final momentum.
Using conservation of momentum and certain assumptions,? the crystal momentum of
the electron (its momentum when it was in the sample) can then be estimated [6].

20Only the component of the momentum parallel to the sample surface is conserved, so other as-
sumptions are needed to determine the perpendicular component.



1.2. Green functions

We are interested in the photocurrent I,(¢) measured as a function of both energy
and momentum ,> because it gives us a distribution reflecting the density of states in
the sample (modified by some matrix elements, as we will see in Eq. 1.4). This current
equals the probability per unit time of detecting an electron with momentum x and
binding energy € upon exposing the material to a monochromatic light of frequency w.
The electromagnetic field of the light is varying sinusoidally in time

E(t) = Ey [exp(—iwt) + exp(iw t)] = 2Eq cos(w t) .

Taking the direction of the field in the x direction, the electrostatic energy of electrons
in this field leads to the perturbing Hamiltonian

~

Hy(t) = E(t) Zm =V [exp(—iw t) + exp(iw t)] ,

where the operator V = E, >, Z; is time-independent and called the electric dipole
approzimation. Applying first-order perturbation theory [7], we get Fermi’s golden rule
for calculating the transition rate (probability per unit time) from some initial state of
the system [¢;) to some final state |iy)

~ 2
Py =27 (sl V |3} 6(By — By —w) |

where [; is the initial energy of the system and Ey is its final energy.

Assuming the system is initially in its ground state with N electrons, the desired
probability of detecting an electron with momentum x is the sum of transition rates to
all possible final states with N electrons, where one of them is the ejected electron with
momentum s

Using the sudden approximation, which assumes that the electron is ejected instantly
without further interactions with the rest of the system, each final state can be written as
a product of the ejected electron state and the state of the system with N — 1 remaining
electrons

[n) = el lun ™t

and the final energy equals the sum of the kinetic energy of the ejected electron and the
energy of the rest of the system

N N—-1
E,@n = En + Ekinetic -

3We are using atomic units where the numerical values of the four fundamental constants: electron
mass me, elementary charge e, reduced Planck’s constant i and Coulomb’s constant ﬁ are unity. In

atomic units, momentum and wavevector have the same numerical value, while energy and frequency
have the same numerical value.
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The kinetic energy of the electron is given by
Ekinetic — W — & — ¢ )

where ¢ is a threshold known as the work function.
Besides, the single-particle operator V' can be written in second quantization as

V= Z LR
Then we can rewrite the following matrix elements
<¢,§n|v|¢o ZVJ N 1|C:‘6ATA Wo ZVJ N 1|

—ZV,J N‘lléj|¢év>+zvi7j PNV e el

.3

)C]|77ZJO )

O>
("3>

Since the ground state typically has an extremely small contribution from high energy
electrons (like the ejected one with momentum &), the norm of the state ¢, |¢){’) is almost
zero and the second term above can be neglected. This approximation gets better, the
higher the frequency of the light source i.e. the higher the kinetic energy.

The photocurrent thus reads

&)= IVusl*
J

Using the integral representation of the delta function and the completeness of the
eigenstates |¢,,), we can rewrite the above expression as

DL S e s N (R
J n
=Y Wil / dE S (ol e (1,5 440) (12)

3™ 2 ) (BN — B — ¢>] |

_ Z |V,€7j’2/dt elletot <w0’eiﬁté;efthéj‘wo> (13)
J

= YWl [ et alef(0slun) (1.4)
J

So, computing the photocurrent boils down to the Fourier transform of the quantity
(1/)0|é; (t)¢;|¢o). This quantity is called the lesser Green function, and there are many
other types of Green functions which we will encounter later in this chapter. The utility
of Green functions is not restricted to photoemission spectroscopy. They can also be
used to calculate various interesting properties like the ground state of the system, its
excitation spectrum and the expectation values of single-particle observables [8].



1.2. Green functions

1.2.2. Green functions in the time domain

In the following, we explore the analytic structure of Green functions in the time domain.
The basic building blocks are the greater and lesser Green functions, which are defined
on the real axis and then analytically continued to the complex plane. We use these
analytic continuations to build a single Green function of complex time, in terms of
which we express all other Green functions.

Greater and lesser Green functions

The greater and lesser Green functions are the building blocks for other Green functions.
They are defined in configuration space z := (r, o) as following:

G (z, 2/, t,) = —i <@U(r,t)@g,(r',t')> (1.5)

G<(x,2' t,1) = =+i <\ffi_,(r’, ), (r, t)> (1.6)

where U and UT are the field operators in the Heisenberg picture and (...) is an ex-
pectation value to be defined next. The upper sign in the second equation is used for
fermions while the lower one is used for bosons.* Note that the second equation follows
from the first one by exchanging the field operators and the different signs for fermions
and bosons arise naturally from their statistics.

There are two classes of Green functions, zero temperature and finite temperature.
The previous definitions are valid for both and which is which depends on the interpre-
tation of the expectation value.

At zero temperature, the system stays in its ground state |1y) and all the information we
need about an operator O at zero temperature is contained in the following expectation
value

(o[ o)

On the other hand, at finite temperature the system is in a mixed state and the prob-
ability of finding the system at a specific energy level depends on the external constrains
and determined by means of statistical mechanics. In this case, the expectation value
should take into account both quantum and statistical averages.

<O> (1o OWO)

We are interested in the so called Grand Canonical Ensemble, where the system is
allowed to exchange not only energy, but also particles with the surrounding while being
kept at fixed temperature T and chemical potential p. With these constraints, the

probability of finding the system at energy level E' with N particles is proportional to
e~ (E—pN)/(kT)

4We will address both the fermionic and the bosonic case in most formulas simultaneously using
the same convention.
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In this ensemble the finite-temperature expectation value of the operator O is defined
as

<O> Z" Tr[ (H“NO] Z" Zn| _BH“NO]n)
WhereZ:Z(n\e_ (H—u) In) .

The sum is over an orthonormal basis in Fock space (i.e. the sum runs over states
with different particle numbers), N is the particle number operator and 8 = 1 JET is
the inverse temperature. In order for this expectation value to exist, the trace must
converge absolutely.® Therefore, the operator H must be bounded from below (i.e. there
exists a ground state, which is the case for physical Hamiltonians) and we assume that
this is sufficient to guarantee the necessary absolute convergence.

Note that we can retrieve the zero temperature definition by taking the limit § — oo.
In this limit, only the state with the lowest energy survives the exponentially damping
factor and we are left with the ground state. This assumes, that the ground state is
non-degenerate, otherwise we end up with an equally weighted average of the degenerate
ground states.

Remark. In the grand-canonical ensemble, it is convenient to modify the definition of
the Heisenberg operators as follows

O(t) = ei(ﬁ—uN)tée—i(ﬁ—uN)t )

This has the advantage of using the same operator H - uN for both time evolution
and thermal averaging. It will produce the same results as if we had used H for time
evolution instead, as long as the Hamiltonian H preserves the number of particles (which
is assumed to be the case) and the operator O also does not change the number of particles

(whzch 1s the case for combinations of paired w and @/JT) The first property means that

H commutes with N so the exponentials can be factorized into two terms et gnd

eFinlNt - The second property means that eFinlNt commute with O so we can combine
them getting the unity operator and we are back to the original definition of Heisenberg
operators. However, for Green functions, the operator O is a field operator so it does
not commute with N. Had we used only H for the time evolution instead, we would have
had a different version of Green functions G which can be related to the our version by
a phase factor

G™ (x, ' t, 1) = e ) G (2 t,1')
G<(x, ', t,t") = e ") G<(z,2' t,1') .
Keep in mind that this simply corresponds to a shift by u in the frequency domain i.e.

this modification corresponds to measuring single-particle energies with respect to the
chemical potential.

"Remember that the expectation value of a random variable z exists and equals to E[z] = Y2 pia;
if and only if this series converges absolutely i.e. the sum of the absolute value of the summand is finite.
Otherwise, the series can be rearranged to have different limits!
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Using this modification, only H- ,uN appears in Heisenberg operators. T@erefore, it is
convenient shorten the notation in the grand-canonical ensemble and use H to actually
denote H — uN and E,, to denote E, — uN. This allows us to handle both the zero and

finite temperature cases with the same notation.

Physical interpretation For ¢t > t/, the greater Green function can be interpreted as
the probability amplitude for detecting a particle with spin ¢ at position r and time t
after adding a particle with spin ¢’ at position r’ and time ¢'. The lesser Green function
has no physical interpretation in this case. On the other hand, for ¢ > ¢, the lesser
Green function can be interpreted as the probability amplitude for detecting a hole with
spin ¢’ at position r’ and time ¢’ after removing a particle with spin ¢ from position r
and time ¢. The greater Green function does not have a physical interpretation in this
case. By using the greater Green function in the earlier case and the lesser one in the
later case, we get the causal Green function (see Eq. 1.23).

Different basis The field operators can be used to define creation and annihilation
operators in any single-particle basis ()

— [ do vnta) ¥1(2)
o= [ do vife) W),

This allows us to rewrite the Green functions in configuration space as

G” (x, 2 t, 1) ZZ% Z (1) (1.7)
G<(x, ', t,t) ZZ% St (1.8)

where the Green functions in this single-particle basis are defined as following

Gy (t 1) = —i <éﬁ(t)éL, (t’)>
GZ(t,t) = +i <CT (t’)é,.i(t)> .

The physical interpretation of these Green functions is the same as above except that
they are talking about particles in states x, k" instead of x, x’.

Time dependence Assuming the Hamiltonian is time-independent, only time dif-
ferences matter and the Green functions are functions of one time variable only

Grult) = =i {2u(1)2l,(0)) (19)
G2 (t) = i <éL,(O)én(t)> . (1.10)
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In the rest of this chapter, we will use this version of Green functions which are written
in a basis ¢, and are functions of one time variable. Sometimes, we will drop the basis
indices k, k' to make the formulas less cluttered. In this case, such a basis is implicitly
assumed.

Analytic continuation of G~ (t) and G=<(t)

Assuming the greater and lesser Green functions are analytic on the real axis, it is
possible to analytically continue them to the imaginary axis using the replacement it — 7
(this is known as Wick rotation), where 7 is called the imaginary time. More generally,
we can analytically continue these functions to other regions of the complex plane by
naively replacing the real time ¢ in Egs. (1.9) and (1.10) with the complex time ¢ == t—ir,
where t represents real and 7 imaginary time (the minus sign is introduced to agree with
Wick rotation):

G7,(0) = =i (&), (0) (1.11)
Crn(Q) = £ (e (0)6:(0)) (1.12)

In order for this simple substitution (replacing the real time by a complex one) to
give the correct answer at some point (y, it should be possible to connect (y to the real
axis by some arc that do not cross any singularity. Fortunately, as we will show below,
G~ (¢) is bounded on the strip

D>={C:—-fB<Im(()<0}={t—it:0<7<+08, t e R}, (1.13)
and G=<(¢) is bounded on the strip
D ={C:0<Im(¢) <+p}={t—ir: = <7<0, teR}. (1.14)

This guarantees that the greater and lesser Green functions do not have singularities in
the corresponding strips and thus G~ (¢) and G=<(() are the unique analytic continuation
of G7(t) and G=<(t) from the real axis to D~ and D=, respectively.

In the definition of the greater Green function for real time, we implicitly assumed
that the factor e ?# guarantees the absolute convergence of the expectation value

<€_5H6itHéH€_itﬁéL/> )
This implies that the expectation value with complex time ( =t — it

<e_’8H@i<Héne_iCHéL> _ <6_(6_T)H€itHéK€_itH€_THéL,> (115)
must also converge absolutely when both the exponential factors e~B="H and e="H have
negative exponents. This is satisfied for 7 €]0, 5[, and therefore G~ (¢) is bounded and
analytic on the strip D~. Similarly, we can show that the mere existence of the lesser
Green function on the real axis implies that G<(¢) is bounded and analytic on the strip
D<. The analytic structure of G~ (¢) and G<(() is depicted schematically in Fig. 1.2.

10



1.2. Green functions

() =~ r=-p
G=(¢) D<
GO Re(¢)=1
................................. G>(t>'
G>(¢) = >
_ 2

Figure 1.2.: Analytic structure of G=(¢) and G<(¢) in the complex time domain { =
t—i1. The greater Green function is analytic on the strip D~ while the lesser
Green function is analytic on the strip D<. Note that counter-intuitively, the
greater and lesser Green functions live in the lower and upper half-planes,
respectively. This is because we introduced the minus sign in ( :==¢ — 47 in
order to agree with Wick rotation and the convention used in the literature.

Remark. Note that the analytic continuation of G~ and G< to strips D~ and D=,
respectively, is all we can say in the general case. In certain cases, those functions
can be analytically continued further outside those regions. For example, for systems
with a finite basis set (like those arising in the linear combination of atomic orbitals
approzimation), the expectation value in Eq. (1.15) is finite and ezists for any T, thus
G~ (C) is defined in the entire complex plane of (. However, as we will see later, knowing
the Green functions in the aforementioned strips (or even smaller parts of them like the
imaginary azis) is all we need.

Relating G~ (¢) and G<(¢) The analytically continued greater and lesser Green func-
tions satisfy an important (anti)periodicity relation along imaginary times

G (C—iB) = _72 Tr -e_ﬁﬁ€i(C_iﬁ)ﬁé,{e‘i(c‘w)ﬁél,}
— Uy |l omicH pBH AT,]
2 (1.16)
N P »
= Uy [eBagt gic s _ZgH]
Z r _6 C}‘i e C.€
= :FG:,/{’(C) )

where the cyclic property of trace was employed in the third line.
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1. Analytic Structure of Green and Correlation Functions

Zero limits of G~ (¢) and G<(¢) Due to analyticity, the limit { — 0 of greater and
lesser Green functions is independent of the way zero is approached, as long as ( stays
in the proper region of analyticity

lim G<, (C) = i <éL,éK>

¢—0

lim G, (C) = —i (1 ¥ <cfcﬁ>> .

¢—0

When «’ = k, the limits are related to n, = <éL,éH>, the density of particles in state x,

as following

lim G5,(¢) = ~i () (1.17)
lim G7,(¢) = ~i (1 F ) - (L.18)

Green function of complex time G(()

The analytic structure of G7(¢) and G=(¢) and their relation motivates us to combine
them into one function:

_JG7(Q), for(eD-
G(¢) = {G%)’ for ¢ € D< (1.19)

This function has some interesting properties:

Analyticity It is only analytic on each of the strips D~ and D< separately because it
has a jump [G” (t) — G<(t)] over the real axis. The jump over the real time axis is
called the spectral function and defined with an extra i factor as

A(t) =i [G7(t) — G<(1)] | (1.20)

which is nothing but the expectation value of the (anti)commutator of annihilation
and creation operators at different times

A (t) = <[é,€(t),él,(0)]i> _ <@H(t)@g,(0) + éL,(O)éH(t)> .

The spectral function will be important later when we move to the frequency
domain.

Boundedness Since G7({) and G<(() are bounded on strips D~ and D<, respectively,
the function G(¢) is bounded in on its domain.

(Anti)periodicity It is (anti)periodic with period 5 along any line parallel to the imag-
inary axis. This follows directly from Eq. (1.16) relating the greater and lesser
Green functions. Therefore, It is possible to extend the definition of G(¢) beyond

12



1.2. Green functions

D~ U D= by repeating G~ and G< alternatively over strips of width 5 . However,
it is important to note that this (anti)periodicity exists "naturally” only in the
region D~ U D= and is only imposed by definition outside it. The reason is that,
when the analytic continuation of G(() is possible outside this region, then the
analytically continued function, in general, won’t be (anti)periodic.

Despite these nice properties, one may still ask: why do we bother with defining this
extra function? The answer, as we will see in the next section, is that the values of
the commonly used Green functions can be related to the values of G(() over different
contours. Furthermore, the Fourier transform of each of the previously defined Green
functions can be computed as the Fourier transform of G({) along some contour.

Therefore, we can say that the function G(() is the fundamental function in time
domain and all other Green functions are just different faces of this function.

Relating G(() to other Green functions

Besides the greater and lesser Green functions, there are many other ones. The retarded
and advanced Green functions are defined as

GR L (t) = —if(1) < [éﬁ(t), aL,(O)L> (1.21)
G2 (t) = if(—t) < [éﬁ(t), &, (0)} i> . (1.22)

As we will see later, the Fourier transforms of these functions turn out to be very
important in the frequency domain.
The causal and anti-causal Green functions are defined as

GO (t) = —i <T (@H(o, é;(()))> (1.23)

GAC(t) = —i <T <é,$(t),é,:,(0)>> , (1.24)

where T is the time-ordering operator which orders its arguments in chronological order
from right to left

~ N

N[ AW B it <t
T (A, B)) ‘_{ FB)A®W) ift >t (1.25)

and T is the anti-time-ordering operator which orders its arguments in chronological
order from left to right. The causal Green function has a physical interpretation as
it describes the propagation of an additional particle for ¢ > 0, and the propagation
of an additional hole for ¢ < 0. The anti-causal Green function is mentioned here for
completeness as the opposite of the causal one.

Finally, the Matsubara Green function is defined as

o (7) = — <TT (aﬁ(f), aL,(0)>> (1.26)

13



1. Analytic Structure of Green and Correlation Functions

where 7 is the imaginary time with 7 € |-, 0[U]0, [, T is the imaginary-time-ordering
operator which orders its arguments in increasing order of 7 from right to left, and the
imaginary-time operator ¢,(7) is defined as ef7¢,e 7. Matsubara Green function is
the one which is often calculated using Monte Carlo simulations, because it is generally
smooth and has nicer properties than Green functions of real time (remember that under
Wick rotation ¢t — 7, the oscillatory factor e —ith hecomes convergent e —rH ).

These Green functions can be related to the greater and lesser ones as following

GR(t) = 0(+t) [G7(t) — G=(1)] (1.27)
GAt) = 0(—t) [G=(t) — G=(t)] (1.28)
GO(t) = O(—t) G=(t) +0(+t) G=(t) (1.29)
GAC(t) = O(—t) G (t) + O(+t) G=(t) (1.30)
G(1)=—i[ 0(—7) G=(—iT) + 0(+7) G~ (—iT)] , (1.31)

from which we see that each one of them can be related to G({) along some contour.
Take for example the Matsubara Green function whose values equal the values of G(()
along the imaginary axis (up to a factor —i).® Other Green functions can be identified
as G(() along contours that are infinitesimally close to the real axis. These contours
differ by how they approach the real axis for positive and negative times. For example,
the contour of the causal Green function is above the real axis for negative times and
below it for positive ones. Fig. 1.3 shows the different contours corresponding to the
different Green functions.

This unified view of the different Green functions as different faces of the fundamental
Green function G(() is quit useful. It allows us to infer easily many properties of the
different Green functions and their relations. For example, comparing Figs. 1.3e and 1.3g
shows that rotating the contour of the causal Green function by 90 degrees clockwise
gives us the Matsubara function; This is nothing but the Wick rotation! Notice also
how the imaginary time ordering, which may seem quite arbitrary in the definition
of the Matsubara Green function, arises naturally as the result of moving along the
imaginary axis. Moreover, the zero limits of Matsubara Green function follow directly
from Egs. (1.17) and (1.18)

lim G, .(7) = £n, (1.32)
T—0~
lim G, .(7) = —1£mn,, (1.33)
T—0t

and the f limits follow directly from the (anti)periodicity relation (see Eq. 1.16)

hIIl g/i H( ) + lim gH,H(T) = Nk (134)
T 70"
hm Grw(7) =F lim Gy x(7) = £1 —n, . (1.35)
T——p T—0F

6This factor comes back automatically when computing contour integrals because d¢ equals —idr
along the imaginary axis.
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1.2. Green functions

—TA —TA
G=(¢) T=-0 G<() T=-p
G> G<(t
&)t SO e o
............ >............................)..............
G~ (<) T=8 G T=p
(a) Greater Green function (b) Lesser Green function
—TA —TA
G=(¢) T=-F G0 T=-p
G*(t) ' GA(t)
.............. e GO QT S 1;
............... S > J .
G~ (<) T=p5 G7() T=p
(c) Retarded Green function (d) Advanced Green function
—TA —TA
G=(¢) T=-F G0 T=-p
C AC
........... pe] GOt ) T |
............... )~ R, ~ R
G~ (<) T=8  G7() T=p
(e) Causal Green function (f) Anti-causal Green function
—T A
@O T= P
g(r); ‘
Y
G () r=3

(g) Matsubara Green function

Figure 1.3.: The different Green functions of time can be seen as contours of G(() in the
complex time plane ( =t — iT. Notice that the contours (a)-(f) are shifted
infinitesimally above or below the real axis because G(() is undefined on
the real axis. However, the contour (g) of the Matsubara Green function is
actually on the imaginary axis and the apparent shift is for visual clarity
only.
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1. Analytic Structure of Green and Correlation Functions

1.2.3. Green functions in the frequency domain

Now that we are done with the analytic structure in the time domain, we move to
the frequency domain. We take the Fourier transforms of the different Green functions
and see how they are related. The Fourier transforms of retarded and advanced Green
functions turn out to be the basic building blocks in the frequency domain. We analyti-
cally continue them to the complex frequency plane, and use that to build a single Green
function of complex frequency, in terms of which we express all other Fourier transforms.

Fourier Transform of G~ and G<

The greater Green function is bounded over the real time axis, so its Fourier transform
exists and equals

G~ (w) :/ dt e G (t) .
Its analytic continuation G~ (() is also bounded and has a Fourier transform along any
line parallel to the real axis within the strip D~. Interestingly, this transform is the
same for every line £, regardless of its shift i.e.

o) o0
/ d¢ e G7(¢) = / dt =) G (t —iT) = / dt ' G”(t) = G~ (w) . (1.36)
Ly —00 —50

This can be readily seen by performing the integral along the contour shown in Fig. 1.4.
The total contour integral equals zero because the function is analytic in the enclosed
region. By making the left and right limits go to infinity, contributions from side integrals
vanish and thus the integrals over the real axis and line £, are equal.

Similarly, we can find the Fourier transform of the lesser Green function over real time
axis -

G (w) :/ dt e G=(t) ,

and it equals its transform along any line £, within the strip D= and parallel to the real
axis

/ﬁ d¢ e GE(¢) = /_ Tt e G () = G<(w) (1.37)

oo

Relating G~ (w) and G<(w) The (anti)periodicity relation of greater and lesser
Green functions in the time domain (see Eq. 1.16) leads to the following relation in
the frequency domain

G (w) = / d¢ S G7 () = F / d¢ & G (¢ +if)

,61 Ll

_ :F/dC eiw((fiﬁ) G<(C> _ qzeﬁw/dc eiw( G<<C) (138)
£1—iﬁ El_iﬁ

= Fe™ G (w) .
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1.2. Green functions

tm(Q) = =8
G=(()
Re(¢) =t
Y i
------------ » Y >
G~ (¢) L L
=B

Figure 1.4.: The contour used to compute the Fourier transform of G~ (() along the line
L.

Fourier transforms of other Green functions

From the previous section, we see that G~ (w) is the Fourier transform of G(() along
any line parallel to the real axis in D~ and G<(w) is its Fourier transform along any line
parallel to the real axis in D<. But why to stop at such paths?

Since G(() is bounded, it has a Fourier transform along any path in its domain D~ UD*<.
Different paths lead to different Fourier transforms, and the most interesting paths are
the ones corresponding to the previously defined Green functions (see Fig. 1.3). The
plan now is to compute the Fourier transforms along these paths and see how they are
connected in the frequency domain.

The first connection point is the Fourier transform of the spectral function A(w), in
terms of which we will express the different Fourier transforms. As we will see later, A(w)
is the central quantity in the frequency domain and computing it from other quantities
is the analytic continuation problem in condensed matter physics.

Greater and lesser functions The Fourier transforms of G(({) along paths (a) and
(b) of Fig. 1.3 give the Fourier transforms of the greater and lesser functions, respectively

/c a d¢ e G(¢) = / gt e G”(t) = G7(w)

—00

/c b d¢ e G(¢) = /_ "t e G<(t) = G~ (w) .

[e.e]

We can relate them to the Fourier transform of the spectral function by taking the
Fourier transform of both sides of Eq. (1.20):

Aw) =i [G7 (W) — G< ()] .
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1. Analytic Structure of Green and Correlation Functions

But G7(w) and G<(w) are related by Eq. (1.38), therefore

Aw)
> —
G W) =—iT
- Aw)
< —
G (w) = T B -
Defining the weight function
1
the Fourier transforms of greater and lesser Green functions read
G~ (w) = —iA(w) f(w) (1.40)
G (w) = AWw)f(—w). (1.41)

Remark. The weight function f(w) is closely related to the particle statistics

1

The upper sign gives the Fermi-Dirac distribution ng.p while the lower sign gives minus

the Bose-FEinstein distribution —ng.g. This function satisfies the following relations

e~wB
F(~) = oy = g s = Fe P () (1.42)
fw) + f(—w) = f(w) £ e P f(—w) = f(w)[l £ ] = 1. (1.43)

Retarded and advanced functions The Fourier transform along paths (¢) and (d) of
Fig. 1.3 give the Fourier transforms of the retarded and advanced functions, respectively

/ C ¢ ™ G(() = / Dt e G<(t) + / "t et G (1)

—o0 0

= /Oo dt e™' [G>(t) — G=(t)] = GF(w)

0

/cd d¢ e G(¢) = /0 dt e™ G=(t) + /0—00 dt e™" G~ (t)

—00

- / dt e [G=(t) — G7(t)] = G*(w)

We can relate G®(w) to the Fourier transform of the spectral function by taking the

Fourier transform of both sides of the following equation (see Eq. 1.27)

GER(t) = —if(t)A(t) .
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1.2. Green functions

and writing A(¢) as the inverse Fourier transform of A(w)
GR(w) = —i / dt et A1)
0

> ) do' .,
— —Z/ dt ezwt/i efzw tA(w')
0 2m
d / o . ,
= —i / & A(w’)/ dt e @t
2m 0
dw’ i(w—w )t E0
=
2m w—w' |,
The upper limit does not exist for real frequencies, but it goes to zero if the frequency

has an infinitesimally small positive imaginary part +in. So we replace w by w + in and
get the Fourier transform of the retarded Green function

GR(w) = / ' AW) (1.44)

Ew—i—in—w’

Similarly, we can relate the Fourier transform of the advanced Green function to the
Fourier transform of the spectral function

G w) = /d—w/ﬂ. (1.45)

2 w—1n — W’

Remark. Since multiplication in the time domain becomes convolution in the frequency
domain, we can also derive the previous results as the convolution of the Fourier trans-
forms of the spectral function and the step function. The Fourier transform of the step
function reads

/dt et (t) = ! (1.46)

w+in’
where 1 1s an infinitesimally small positive number. This can be verified by evaluating

the inverse Fourier transform
d_w 6—iwt t
2m w +1in

When t > 0, the integral can be closed in the lower half-plane of complex w enclosing a
pole of residue i and the expression evaluates to one using the residue theorem. Whent <
0, the integral can be closed in the upper half-plane where no pole exists and the expression
evaluates to zero. The above expression is also known as the integral representation of
the step function.

Causal and anti-causal functions The Fourier transforms of G(() along paths (e)
and (f) of Fig. 1.3 give the Fourier transforms of the causal and anti-causal functions,
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1. Analytic Structure of Green and Correlation Functions

respectively

0 oo
/ d¢ ™ G(¢) = / dt e G=(t) +/ dt e*'G” (t) = G%(w)

—00 0

0 oo
w( — wt 1> iwt 1< — (YAC
/cf d¢ "> G(¢) / dte™'G (t)+/0 dte™'G=(t) = G™(w) .

—0o0

We can relate G (w) to the Fourier transform of the spectral function by writing G™ (t)
and G<(t) as the inverse Fourier transform of G*(w) and G<(w) and using Egs. (1.40)
and (1.41)

0 00
G (w) / dt e G (1) + / dt 1 G (1)

—00 0

0 !
—i/ dtei‘“t/C;ie_iw/tA(w,)f(—w/)

oo T

e ] /
— z/ dtei“t/ii e AW F(W) -
0

™

Applying the same trick used for retarded and advanced functions, adding in to the
frequency for positive times and —in for negative times, we get

- [ df _AW)  p g / el CONNTYS (1.47)

2r w—1n — W’ %quin—w’

Similarly, the Fourier transform of the anti-causal Green function can be related to the
Fourier transform of the spectral function

)= [ 5 L COR /5 AWy s

27 w—1in — ' 2m w4 — W’
Matsubara Green function Since G(() is (anti)periodic along the imaginary axis,

the Matsubara Green function is also (anti)periodic with period . This means that it
can be written as a Fourier series

1 .
G(r)= = e ™G,
B4
whose coefficients G,, can be computed as the Fourier transforms

B
G, :/ dr ei“’”Tg(T),
0

at the so-called the Matsubara frequencies w,, given by

W, ::M (Fermions)
b (1.49)
2nm
W, ::7 (Bosons) .
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1.2. Green functions

Those coefficients are related to the Fourier transform of G(() along the imaginary axis
(path (g) of Fig. 1.3) for imaginary frequencies iwy,

B ) 1 /B )
G, = / dr e G(T) = —/ dr e*“""G(T)
0 2.Jp

i [° V(s i fr
:—-/<hﬂwﬂmeﬂ4ﬂ——/}hﬂwﬂmGw4ﬂ
2 -8 2 0

2 C

g

We can relate the coefficient G,, to the Fourier transform of the spectral function by
employing the inverse Fourier transform of G~ (—i7)

B
G, = —i/ dr "G (—iT)
0

B . d(.{}/ s 1
— dr e“nT Y= (i) >,
Z/O Te / 5 ¢ G~ (w')
! B ) ,
_ / Z%A(w') f(&) /0 dr elien—)r

_ _/d_“/A(w,)f(w,) {ew——wq =

2 wp, —w' | __,
_ / Wy L Lo eiet
2m l1+evs qw, —w

Since Sw,, is an odd(even) multiple of 7 for fermions(bosons), e“? = F1 and we get

G, — / ' _AW) (1.50)

21w, — W'

Remark. For bosonic systems, the Matsubara frequency wg = 0 lies on the real axis. In
this case, A(w) should vanish at w = 0 at least as fast as w, in order for Gy to be defined,
and we have Gy = GF(0) = GA(0) = [ =2

- 21w

Analytic continuation of G%(w) and G*(w)

When computing the Fourier transform of the retarded Green function, the transform
didn’t exist for real frequencies, and we had to add a positive infinitesimal imaginary
part to the frequency to obtain a meaningful result. Therefore, a different derivation

would have been to compute the Fourier transform directly for complex frequencies’ z

"Typically Fourier transform is only defined for real frequencies. Its analytic continuation to complex
frequencies is rather called the Laplace transform. However, since the name ”Laplace transform” is
not very common in this context, we will use the name ”Fourier transform” whether we have real or
complex frequencies.
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1. Analytic Structure of Green and Correlation Functions

Im(z)=v %
G"(2)
S o ) R Re(z) =
.............................. é.A.(.L;)..)... e o
G4(2)

Figure 1.5.: The analytic structure of G¥(z) and G*(z) in the complex frequency domain
2 = w+iv. The retarded Green function is analytic in the upper half-plane
while the advanced Green function is analytic in the lower half-plane.

and then take the limit to real frequencies. This ”"extended” Fourier transform reads
Gf(z) = / dt e='GR(t) = —i / dt e A(t) .
0

Since A(t) is bounded, the last integral exists when Im(z) > 0. Therefore, the Fourier
transform of the retarded Green function exits for frequencies in the upper half-plane
and it equals

GR(z) = / dw AW) :Im(z) >0.

2T 2 —w

G®(w) is clearly the limit of G¥(2) to real frequencies. Conversely, since G¥(z2) is analytic
in the upper half-plane and it equals G'(w) on a line in that region, G?(z) is the unique
analytic continuation of G¥(w) to the upper-half plane.

Similarly, the Fourier transform of the advanced Green function exits for frequencies
in the lower half-plane and it has the same functional form

GA(z) = / dw AW) :Im(2) <0.

2m z —w

So G4 (w) is the limit of G4 (2) to real frequencies, and G*(z) is the analytic continuation
of G4(w) to the lower-half plane. The analytic structure of G®(z) and G*(z) is depicted
schematically in Fig 1.5.
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1.2. Green functions

Green function of complex frequency G(z)
The identical functional form of G¥(z) and G*(z) motivates us to combine them into
one function
dw A(w)
Giz)= [ ————= 1.51
()= [ (151)

which has the following properties

Analyticity It is analytic in the upper half-plane and the lower half-plane separately
because it has a jump GF(w)—G4(w) over the real axis. To compute this difference

dw' AW dw' AW
R(, N\ _ Ay — [ & _ =)
GHw) = ) /27r w+m—w /277 w—1in —w

we use the identity

1 1
=PpP= ' 1.52
Wi Pw F mid(w) , (1.52)

where P denotes the principal value.

6"w) - ) =P [ 5 :‘(_“2 - Aw)

T
——A
P/27Tw w27 ()
= —iA(w

Therefore, the jump over the real axis equals (up to a —i factor) the spectral
function

Aw) =i [GF(w) = G (w)] . (1.53)

Decay Behavior It goes to zero, as z goes to infinity in any line in the upper or lower
half of the complex plane. More specifically, it decays as 1/z. This follows from
the boundedness of A(t) because

lim G(z) = lim [ &AW _ 22 Aw) _ A(t=0)

|z|—o0 |z|—o0 ) 2T 2 —w z z

Like in the time domain, one may ask: why do we bother with defining this extra
function? The answer again is that we can express the different Fourier transforms in
terms of this function as we will do in the next section.

Therefore, we can say that the function G(z) is the fundamental function in frequency
domain and the Fourier transforms of all the other Green functions are just different
faces of this function.
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1. Analytic Structure of Green and Correlation Functions

Relating G(z) to other Fourier transforms

Let us start with the advanced and retarded functions G¥(w) and G*(w), which can
be seen as the limits of G(z) when approaching the real axis from above and below,

respectively
GR(w) = lim G(w +1in), G*w)=lim G(w —in) .
n—0 n—0

Other Fourier transforms can be expressed in terms of G®(w) and G4(w) or their analytic
continuation, and so they can be written in terms of G(z).

Greater and lesser functions Substituting Eq. (1.53) in Eqgs. (1.40)-(1.41), we get

67 (@) = f() [6"(w) - GA(w)] (1.54)
G~ (w) = — f(~w) [GF(w) — G (w)] . (1.55)

Causal and anti-causal functions Applying identity (1.52) to Eq. (1.47), we can
write

6w =P [ 5 L [ty 5+ T 1 () = S A)

2T w—w

— f-0) [P [ 52 204 Ta)

2T w— W

w1 [P [ 52 20 - P

2r w—w' 27

where the trivial result f(w) + f(—w) = 1 = f(') + f(—w') was used (see Eq. 1.43).
Applying the aforementioned identity in reverse, we get

6%w) = (=) [ ot AW ) / W AW) (s

21 w —in — W' 2 win—w
which can be expressed in terms of retarded and advanced functions as
G (w) = f(w)GE(W) + f(—w)GA(w) . (1.57)
Similarly, the Fourier transform of the anti-causal Green function can be written as

G W) = fw)GA (W) + f(—w)GE(w) . (1.58)

Matsubara Green function Comparing the Fourier coefficients of the Matsubara
Green function Eq. (1.50) with the definition of G(z), we find that those coefficients are
just G(z) evaluated on the imaginary axis at Matsubara frequencies

G, = Gliw,) . (1.59)

The fact that G(z) and G, have similar analytical formulas may seem puzzling at first
glance, but it is actually a direct result of the analyticity and (anti)periodicity of G(()!
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1.2. Green functions

It would not have been surprising, had we calculated coefficients G,, in a different way,
which we will do next. The coefficients G,, can be calculated as the Fourier transform of
G(¢) along the imaginary axis for imaginary frequency iw,

B , —if o .
G, = —i/ dr "G (—iT) = / d(—ir) el(“"”)(*”)G>(—z’7)
0 0

C1

For positive w,, we can close this contour as shown in Fig. 1.6 . The total contour
integral is zero because the enclosed region has no poles, while the contribution from
the right contour C3 vanishes for large times, and we have

[ aceticrq) = [ acetnierq) - [ acetecro).
Cy Co Ca

But since e“# = F1 and G~ ({ — i) = FG<(¢), we can calculate the Cy integral as a
contour integral just above the real axis, and we have

6, = [ dceGe(q) - [ aceteicr(o).
Cs Ca
which is nothing but the contour integral for the retarded Green function (compare to
Fig. 1.3c). As a result, the Matsubara Fourier coefficients for positive Matsubara fre-
quencies equal the Fourier transform of the retarded Green function at the corresponding
imaginary frequencies. Similarly for negative w,, we can close the contour in the third
quadrant and relate G,, to the Fourier transform of the advanced Green function.

Uniqueness of G(z)

Knowing the retarded Green function G#(w) is sufficient to determine G(z) uniquely
in the upper half-plane. This follows immediately from the identity theorem because
G (w) provides G(z) values on a line infinitesimally above the real axis which qualifies
as a set with an accumulation point in the upper half plane. Similarly, knowing the
advanced one G*(w) is sufficient to determine G/(z) uniquely in the lower half-plane.

Interestingly, knowing G,, on the Matsubara frequencies is also sufficient to determine
G(z) uniquely in both the upper and lower half-planes. This is less obvious than the
previous case because Matsubara frequencies form a discrete set with no accumulation
point. The key features in spelling out GG(z) as the unique analytic function, that matches
G, at Matsubara frequencies, are its two aforementioned properties: analyticity in the
upper and lower half-planes, and decay to zero at infinity. Ref. [9] provides a proof of
the uniqueness of G(z) given its values at Matsubara frequencies. In the following, we
provide an alternative proof of the same result.

Suppose that there are two functions G1(z) and Gs(z) which are analytic on the
upper and lower half-planes, separately. Suppose also that they decay to zero when z
approaches infinity and that their values are equal at Matsubara frequencies z,, = iw,.
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1. Analytic Structure of Green and Correlation Functions

Figure 1.6.: Matsubara Fourier coefficients G, can be computed as the Fourier trans-
form of G(¢) along C; for complex frequencies iw,. Due to analyticity and
(anti)periodicity of G((), this equals to the Fourier transform along contours
—C4 and —Cs (when w,, is positive). These contours are equivalent to the
contour of the retarded Green function.

Then, their difference F'(2) := G1(z) — G2(z) is also analytic on the two half-planes and
has zeros at z,. Due to the decay of GG; and G, this function is bounded in any region
away from the real axis®, so the shifted function E(z) := F(z+ 27/f) is bounded on the
upper half plane.® The next step is to prove that F(z) is identically zero in the upper
half plane.

Consider the following transformation from the open unit disk to the upper half-plane

1
oy —z=1 —i—y.
L—-y

Using this transformation, we compose the following function

which is analytic and bounded on the unit disk and has zeros at points ¥, inside the
unit disk. The set of zeros ¥, is the preimage of positive Matsubara frequencies under
the above transformation

Wy, — 1 Wy — 1

p— _1. p— f—
Yn = ¢ (itwn) o +i w1

8The functions G; and G5 are analytic on the upper and lower half-planes separately, so they may
diverge near the real axis.

9The shift is chosen such that new function does not not diverge in the upper half plan and has
zeros at the Matsubara frequencies.
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1.2. Green functions

and it has 1 as an accumulation point. If this accumulation point were inside the unit
disk, we would be able to invoke the identity theorem and the function E would be
zero as desired. Unfortunately, the accumulation point lies on the unit circle, so we
need another theorem that makes use also of the boundedness of E. Theorem 15.23 in
Ref. [10] states that if a function is analytic and bounded on the open unit disk, and
is not identically zero, then (3, 1 — [y,|) < co. But this sum diverges for our function

E(y)

o oo 2

S (-lph =3 — =0,

n=1 n=1

so this function must be identically zero in the unit disk. Then, the original function
E(z), and consequently the difference F'(z), must also be identically zero in upper half-
plane, implying that G; and G5 are identical in the upper half-plane. Similarly, we can
prove that G; and G4 are identical in the lower half-plane. This completes the proof
that the function G(z) which is analytic off the real axis and decays to zero at infinity
is uniquely determined by its values at the Matsubara frequencies.

We should emphasize that the decay behavior at infinity is an essential ingredient for
the uniqueness of G(z). For example, G(ze%?) agrees with G(z) on all bosonic Matsubara
frequencies but the two are completely different functions. As another example, take the
Fourier transform of the greater Green function G~ (() along the imaginary axis, and
extend it to complex frequencies z. Working out the calculation, we get the function

9(z) =

dw A(w) 1 — e*Pe=wh
2rz—w ldews 7’

which has exactly the same values as G(z) at Matsubara frequencies, but which is
otherwise different from G(z). These examples, however, do not contradict the above
result, because those other functions do not decay to zero when z approaches infinity.

1.2.4. Back to the time domain

In this section, we want to close the loop and go back to the time domain by computing
the inverse Fourier transforms of the different Green functions. Remember that we were
able to express all the different Green functions of frequency as Fourier transforms of
G(() along different contours in the complex time domain (see Fig. 1.3). The question
now is whether we can do the same with G(z) i.e. can we express each Green function of
time as an inverse Fourier transform of G(z) along some path in the complex frequency
domain?

Clearly, the retarded G®(t) and advanced G“(t) Green functions can be computed
respectively as the inverse Fourier transforms of G(z) along lines above and below the
real axis and infinitesimally close to it (see Fig. 1.5). Apart from these two functions, the
answer is no!'® Nevertheless, we can express other Green functions of time as the inverse
Fourier transforms of functions related to G(z), namely f(2)G(2) and —f(—2)G(z). A

107t is possible though in the zero temperature limit, which is discussed later (see Fig. 1.9).
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1. Analytic Structure of Green and Correlation Functions

key component in this formulation is the function f(z), which is the analytic continuation
of the weight function f(w) (see Eq. 1.39)

1

f(z) = Ep=—_ (1.60)

Both f(z) and —f(—=z) have poles on the imaginary axis at Matsubara frequencies w,
with residues 1/f.

In Fig. 1.7 and Fig. 1.8, we present the different functions whose inverse Fourier
transforms along the depicted contours give the different Green functions of time. By
noting that the contour Cy in subfigures (c)-(d) in nothing but a deformation of the
contour C; in regions of analyticity, we can say the following: While the different Green
functions of frequency can be expressed as the Fourier transforms of the same function
G(C) along different contours, the different Green functions of time can be expressed as
the inverse Fourier transforms of different functions along the same contour C; .

Remark. Fig. 1.7 shows the contours for fermionic systems. For bosonic systems,
these contours would catch (or miss) the pole of f(z) at Matsubara frequency iw, = 0.
Therefore, we modify those contours slightly in the bosonic case as shown in Fig. 1.8.
One may then object, that the bosonic contours miss (or catch) the pole of G(z) at
w = 0. This not a problem, however, when the spectral function of bosonic systems A(w)
vanishes at zero (see the remark following Fq. (1.50)).

In the following, we will prove that the different Green functions of time are the

suggested inverse Fourier transforms in the complex frequency plane.

Greater and lesser functions Let us start with the greater Green function G~ (t)
which can be computed as the inverse Fourier transform of f(z)G(z) along the contour
C, around the real axis (see Fig. 1.7a)

T(t) = /C & G = [ A /C dz iz {M} |

127r 2T 127T Z—Ww

The contour C; catches the pole at w and we have the expected result

70 = [ 5oAw [ﬂewm] — i [ S @A) =67 (1)

o 2T

Similarly, the lesser Green function G<(¢) can be computed as the inverse Fourier trans-
form of — f(—z)G(z) along the same contour (see Fig. 1.7b).

Matsubara function For positive 7, the Matsubara Green function G(7) can be

computed as the inverse Fourier transform of —if(2)G(z) along the contour Cy around
the imaginary axis (see Fig. 1.7¢)

Io(1) = —i/c d—ze_iz(_”)f(z)G(z) 7 >0.

, 2T
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1.2. Green functions

(a) Greater Green function
Vi

—if(2)G() VA
0y X w
0000 0000000000 000000000000 >

—if(2)60) 14

(¢) Matsubara function, 7 > 0

Ci=C+Cf

(e) Causal Green function (f) Anti-causal Green function

Figure 1.7.: Fermionic contours for calculating different Green functions as inverse
Fourier transforms of functions of G(z) in the complex frequency plane
2z =w +iv. The contour C; is shifted infinitesimally above and below the
real axis while the contour C, is shifted infinitesimally to the left and right
of the imaginary axis. Notice that the contour Cy; can be thought of as a
deformation of the contour C; in regions of analyticity.

29



1. Analytic Structure of Green and Correlation Functions
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(a) Greater Green function
Viki

—if(2)60) 44
Cai i

PXi

—if (2)6() YA

(¢) Matsubara function, 7 > 0

F(2)6() ]

C; x w

.............. Poceuseniiinens, ).
—f(—2)G(2)x

(e) Causal Green function

Figure 1.8.: Bosonic contours for calculating different Green functions as inverse Fourier
transforms of functions of G(z) in the complex frequency plane z = w + iv.
Those contours are slightly modified from the fermion contours (Fig. 1.7)
in order to avoid (or include) the Matsubara frequency at zero. The gap of

.............. <.....-.......o' ) *eansnannannen
—f(—Z)G(z) 4

VA

(f) Anti-causal Green function

the contour C; around zero is infinitesimally small.
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1.2. Green functions

The contour Cy catches the poles of f(z) at Matsubara frequencies and we have the
desired result

L) =—iY) %e—iwma(mn) _ %Z e i) = G(r) |

Wn

Similarly, for negative 7, the Matsubara Green function can be computed as the inverse
Fourier transform of i f(—2)G(z) along the same contour (see Fig. 1.7d).

Remark. It is interesting to see the analyticity interplay between time and frequency
domains. Let us reevaluate the contour integral Iy. Since the integrand is analytic inside
each quadrant and vanishes for large values, the contour Co around the imaginary axis
can be deformed into contour C; around the real axis giving

dz

Iy(r) = —i . %efiz(*iT)f(z)G(z) = —iZy(—iT) =

G(r)=—iG7(—it): 7>0.

So the analyticity and decay of f(2)G(z) leads directly to the analyticity of G=(C). Simi-
larly, the analyticity and decay of — f(—2)G(2) leads directly to the analyticity of G<(().

Causal and anti-causal functions By multiplying G(z) with f(z) in the upper half-
plane and — f(—z) in the lower half-plane, we can get the causal Green function G°(t)
as the inverse Fourier transform along contour C; around the real axis (see Fig. 1.7e)

Ty(t) = / P et ()0 ) - / © i 2)0()

;2 n 27
1 1

— dw dz —iz f(Z) dz —iz (_Z)
_/%AQU)[/Q%@ t—z_w—/cgge t—Z—w] .

When ¢ > 0, both contours can be closed in the lower half-plane. The first contour en-
closes the pole at w and poles of f(z) at negative Matsubara frequencies while the second
contour encloses only poles of —f(—z) at negative Matsubara frequencies. The residuals
at Matsubara frequencies resulting from the first term cancel with those resulting from
the second term, and we are left with

I3(t) = /;Z—C;A(w)%ewf(w) =G (t) :t>0.

When t < 0, both contours can be closed in the upper half-plane. The second contour
encloses the pole at w and poles of —f(—z) at positive Matsubara frequencies while the
second contour encloses only poles of f(z) at positive Matsubara frequencies. The resid-
uals at Matsubara frequencies resulting from the first term cancel with those resulting
from the second term, and we are left with

Z3(t) = / de(w)@ei”tf(—w) =G<(t) :t<0.

o 21
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1. Analytic Structure of Green and Correlation Functions

Therefore, we have the desired result
Is(t) = 0(1)G~ (t) + 6(—

Similarly, the anti-causal Green function can be written as the inverse Fourier transform
of a function whose values in the upper half-plane equal — f(—2)G(2), and in the lower
half-plane equal f(z)G(z) (see Fig. 1.7f).

HG<(t) = GY(t) .

1.2.5. Duality of time and frequency

There is a nice duality between the time and frequency domains. We can think of G~ (()
and G<(¢) as the duals of GF(2) and G*(z), respectively, and the step function 0(t) as
the dual of the weight function f(w). Table. 1.1 shows other aspects of this duality.

In the zero temperature limit 5 — oo, the duality takes its ultimate form. In the
frequency domain, the weight function tends to the Heaviside step function f(w) —
0(w) and the Matsubara frequencies get denser till they cover the whole imaginary axis
iw, — iv. In the time domain, the strips D~ and D< extend till they cover the whole
lower and upper half-planes respectively. Most interestingly in this limit, the values
of each Green function of frequency can be related to the values of G(z) along some
path. Therefore, the inverse Fourier transforms of the different Green functions can
be computed as the inverse Fourier transforms of a single function G(z) along different
contours in the complex frequency domain (see Fig. 1.9 and compare it to Fig. 1.3).

Time Domain ( =t — 7

Frequency Domain z = w + v

G~ (¢) and G=<(() are the basic building
blocks of Green functions of time.

GR(2) and GA(2) are the basic building
blocks of Green functions of frequency.

G~ (¢) and G=(¢) are analytic in the strips
D~ and D=, respectively.

G®(z) and GA(z) are analytic in upper
and lower half-planes, respectively.

G~ (¢), G=(¢) are combined into a single
function G(().

G%(z) and GA(z) are combined into a sin-
gle function G(z).

G(() has a jump over the real axis which
eqauls —iA(t).

G(z) has a jump over the real axis which
equals —iA(w).

A(t) = l[G>(t)—G<(t)] Aw )—Z[GR( ) — GA( )]
G(t) = 0(+1) [G7(1) — G=(1)] G”(w) = f(+w) [G"(w) — G (w)]
GA(t) = (1) [G=(t) = G~ (1)] G=(w) = f w) [GH(w) = G(w)]
G(t) = 0(t)G™ () + 0(—1)G=(t) G (w) = flw )GR(W)Jrf(—w) Hw)
GA(1) = 0(=t)G™ (1) + 0(H)G(1) G (w) = f(-w)G (W) + f(w)G* (w)
G(1) = —iG(—iT) on the imaginary axis G, = G(iw,) on the imaginary axis at

inside the interval |—2, A].

Matsubara frequencies w,.

Table 1.1.: Duality between Green functions of time and Green functions of frequency.
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GE(z) GE(2)
G~ (w) G<(w)
KETTITITTIIIID STTTr La e O AR T u.i
................ 5 7S S N SRR >
GA(2) GA(z)

(a) Greater Green function

VA VA
G"(2) G"(2)
GER(w A
............. ).())Ci G (w) "i
............ ) TR PR SR
G4(2) G (2)
(c) Retarded Green function (d) Advanced Green function
vA VA
GE(2) G (2)
C AC
e G(;‘J)“; .......... G W w
............ R S,
GA(2) GA(2)
(e) Causal Green function (f) Anti-causal Green function
vi

vE

G(2)

(g) Matsubara Green function

Figure 1.9.: The different Green functions of frequency in the zero temperature limit can
be seen as contours of G(z) in the complex frequency plane z = w + iv.
Notice that the contours (a)-(f) are shifted infinitesimally above or below

the real axis because G(z) is undefined on the real axis.

However, the

contour (g) of Matsubara Green function is actually on the imaginary axis
and the apparent shift is for visual clarity only.
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1. Analytic Structure of Green and Correlation Functions

1.3. Correlation Functions

1.3.1. Motivation: linear response theory

The properties of a material are described by how it changes in response to an external
perturbation like an electromagnetic field. When the perturbation is sufficiently weak,
we can neglect higher-order terms and focus on the linear response of the system [11].
This is given by the Kubo formula which we will derive next.

Let us have a quantum mechanical system whose unperturbed Hamiltonian is Ho.
Assuming the system is in thermodynamic equilibrium, we switch on at time ¢y a time-
dependent external field g(t) that couples to an observable of the system B. This
perturbation leads to an additional term in the Hamiltonian

5f](t) = Bg(t) , (1.61)
and the total Hamiltonian of the system reads
H(t) = Hy+ 0(t — to)dH(2) .

Now we are interested in the time dependence of the expectation value of some observable
A

~~ —~ ~~

<fl(t)> _ <6thA€—th> _ <6im€—u{rot cilot jo—itot eiﬁote—iﬁt>
Ui Az (t) 10)

The subscript I stands for the interaction picture where the operator evolves according
to the unperturbed Hamiltonian H,. The evolution operator Uj(t) satisfies the the
following differential equation

8,0 (t) = et (i Hy — iH)e 1t = —is H,; (1)U, ()

with the initial condition
Ur(ty) =1.

We can integrate this differential equation to get a first-order approximation of the
evolution operator

Oy(t) =1 —i / I (YO ~ 1 — i / LS (1) + O

to to

Substituting back in the expectation value and neglecting high-order terms, we get

</1(t)> - <A,(t) i / t dt' A, ()5 H(t') + / t dt’6ﬁ1(t’)AI(t)>

to to

_ <A1(t)> _@'/tt dt’<[AI(t),5ﬁI(t’)]> .
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1.3. Correlation Functions

Since the system, in the absence of a perturbation, is in thermal equilibrium, the first
term is time-independent and equals to the expectation value before switching on the
perturbation. As a result, the last equation can be rearranged to give the linear response
of observable A as

~

5A() = (A0) — (A1) =~ /t v ([Are).58,])

Using the relation between the perturbation term §H and observable B (see Eq. 1.61),
the linear response can rewritten in the following form, called Kubo formula

SA(t) = / N dt' x5 5(t, 1) g(t)

to

vyhere we have defined the retarded correlation function between observables A and
B, also called the response function, as

Wit t) = =0t = ¢) ( [Ar(0), B ()] )

The operators of the correlation function are in the interaction picture which is equivalent
to the Heisenberg picture of the system with perturbation turned off. Therefore, the Kubo
formula expresses the linear response of the system to an external perturbation in terms
of a correlation function of the unperturbed system!

Since the unperturbed Hamiltonian is time-independent, the correlation function de-
pends on time differences only

X,}}B(t> t,) = XﬁB(t - t/) .

Besides, we are usually interested in the steady-state response of the system (as opposed
to transient response), so it makes sense to take the limit ¢y — oo. Then, the linear
response becomes a convolution between the correlation function and the field

SA(t) /_ TR — )g(t) (1.62)

Taking the Fourier transform, the convolution becomes a product and we have Kubo
formula in the frequency domain

0A(w) = x4p(w)g(w) . (1.63)

In the following, we discuss two important cases: The linear response of magnetization
to an external magnetic field which gives rise to the magnetic susceptibility, and the
linear response of the electric current to an external electric field which gives rise to the
optical conductivity.
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1. Analytic Structure of Green and Correlation Functions

Magnetic Susceptibility Let us apply a magnetic field h(¢) to a paramagnetic ma-
terial. The field couples to the magnetic moments fi; leading to an interaction term

SH(t) ==Y fu-hi(t) = goup Y Si-hi(t) = gapp Y > SEh2(t),
=1 =1

=1 a=z,y,z

where ) . is a sum over all sites and ) is a sum over different directions. We are
interested in the magnetization of the system in response to the magnetic field. The
magnetization is defined as the density of the magnetic moment

M. — <l‘7;-> _ _gs‘;/LB <S> |

Identifying operators /1, B in the Kubo formula as spin operators, we can write the
induced magnetization at site ¢ in direction «

00 n

SM2(t) = / ST S TN () R (1.64)
=1 B

where the magnetic susceptibility tensor is defined in terms of the spin-spin retarded
correlation function as

af 1
XM (=1 = v (9s8)* ngsf (t—=1). (1.65)

Optical Conductivity Let us apply an electric field E(r, ) to a system of electrons
which can be written in terms of the vector potential Ag(r,t) as

E(I‘, t) = —@AEXt(I‘, t) s

where Coulomb gauge has been chosen i.e. the external electric potential ¢ey; vanishes.
This field couples to the current operator J leading to the interaction term

SH(t) = e / dr 3(r) - Apw(r.1)
To simplify matters, we go to the frequency domain where the Fourier transforms of the

previous relations read
E(r,w) = iwAgp(r,w)

SH(w) = e/drj(r) A (r,w) = i/drj(r)-E(r,w) .
w
We are interested in the response of the electric current J, = —e <j > which requires

evaluating the expectation value of the current operator

~

j(r,w) = Jr,w) + %Aext(r7w)ﬁ(r) :
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1.3. Correlation Functions

The first term represents the current in equilibrium, while the second represents an
additional current due to the external field. Since there is no net current in equilibrium,
the expectation value of the equilibrium current vanishes in the interaction picture i.e.

<j(}(r)> — 0. Consequently, we can use Kubo formula with operators A = J, and

B=1J 0, to get the desired expectation value of the first term to a linear order in E as

<jo(r,w)> =4 <jo(r,w)> S /dr’ X5 ey10en (@) - B, w) .

1w

The expectation value of the second term can be also evaluated to a linear order in E
in terms of the expectation value of the density operator in the interaction picture

<%Aext(r,(ﬂ)ﬁ(r)> ~ %Aext(r,W) (pr(r)) = e

E(r,w) (pi(r))

wm

The two terms can be summed to give the electric current at position r in direction «
J(r,w) = /dr'Zaaﬁ(r,r’,w)Eﬁ(r',w) , (1.66)
B

where the optical conductivity tensor is defined in terms of the current-current retarded

correlation function IIJ;(r,r') = x7, and the electronic density n(r) = (p;(r))
0

as

(r)fg(r’)
aﬁ( ' ) ieQ ( ' ) ,L.62 ( )5( /)6 (]‘ 67)
o r.r ow):=—II rr,w)+ —n(r r —1T )08 . .

y Loy aB\ts m B

1.3.2. Analytic structure of correlation functions

The Kubo formula served as a strong motivation for studying correlation functions be-
tween observables. The central correlation function is the retarded one 112

XE5(t) = —w(t)<[A(t),f3(0)}> . (1.68)

However, this function does not have nice analytical properties due to the step function,
thus we define the following more basic correlation function'

~

Sap(t) = <A(t)B(0)> . (1.69)

We can also swap the operators in the above expression to get a different correlation
function

A

Sa(t) = Spal—t) = (BO/A(®)) . (1.70)

1 To derive the Kubo formula, we had to use the total Hamiltonian and the interaction picture.
From now on, we will reuse H to denote the unperturbed Hamiltonian and go back to the Heisenberg
picture where all operators evolve according to the unperturbed H.

12\We have dropped the second time variable because the function depends on time differences only.

13The term correlation function, without any prefix, is often used to refer to this particular version
of correlation functions.
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1. Analytic Structure of Green and Correlation Functions

These correlation functions look similar to the bosonic greater and lesser Green func-
tions (Egs. (1.5), (1.6)) where the annihilation operator is replaced by observable A and
the creation operator is replaced by observable B. Noticing that in deriving the analytic
properties of Green functions, we have not used any particular property of creation and
annihilation operators, it should come as no surprise that correlation functions have ex-
actly the same analytical structure as the bosonic Green functions. In particular, we can
analytically continue S,p(t) and Syp(t) to get the imaginary-time correlation function

A~ ~

(1) = 0(r) (A(=ir) B(0) ) + 0(~7) (BO)A(~i7) ) .
and the correlation function of complex time

SAB(C), for C e D>

Sap(¢), for (€ D< (1.71)

XaB(Q) = {
Moreover, each correlation function has a spectral function defined as

(1) =2 <A(t)B(o) - B(O)A(t)> , (1.72)

whose Fourier transform y”(w) can be used to get the correlation function of complex

frequenc
o [
x(2) : : (1.73)

T Z—W
By using the following basic mapping, all the previous relations derived for bosonic
Green functions apply directly to correlation functions:

e > A observable under study
éL, < B observable coupled to external field
iG(C) < x(Q) correlation function of complex time
G(z) < x(2) correlation function of complex frequency

Mapping of other quantities follows immediately

G B response function
iG” < S correlation function
-G X imaginary-time correlation function
1/2A < X" spectral function

There are two particularly important relations. The first is the spectral representation
of the response function which is the analog of Eq. (1.44)

dw/ X// (w/)
R AB
= [ —————. 1.74
s = [ 5 XA (1.74)
The second is the fluctuation-dissipation theorem which is the analog of Eq. (1.40)

2 7
Sap(w) = =5, Xap(w) (1.75)
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1.4. The problem of analytic continuation

1.4. The problem of analytic continuation

Green and correlation functions are analytic functions in the complex planes of time
and frequency and their analytic structure means that they are completely determined
by their values in any sub-domain of either complex time or complex frequency. It
turned out that Green or correlation function values are most efficiently computed on
the imaginary axis using quantum Monte Carlo (QMC) simulations. When QMC is done
in the time domain, the values are calculated for positive imaginary times i7 : 0 < 7 <
B, while they are calculated on Matsubara frequencies 1w, when QMC is done in the
frequency domain. However, examining the definition of Green or correlation function

- [

T Z— W

makes it clear that we need the spectral function A(w) or x”(w) in order to determine
G(z) or x(z) in any other region of the complex frequency plane.

Calculating spectral functions A(w) or x”(w) from QMC data on either imaginary time
or Matsubara frequencies is known as the analytic continuation problem. This is
an important problem because the dynamical properties of a system are determined by
functions like Gf(w) and x¥(w) which correspond to Green and correlation function
values on the real axis.

1.4.1. Analytic continuation relations

In the following, we will relate the spectral functions to both imaginary-time and
imaginary-frequency quantities. The relation to Green function values at Matsubara
frequencies is obtained easily from equations (1.51) and (1.59)

G, = G(iw,) :/d_w Aw)

oM W, — W
The relation to imaginary-time Green function of positive 7 can be obtained from the
inverse Fourier transform of the greater Green function

(1.76)

G(1) = —iG~ (—it) = —i/;i—we_w(_”)G>(w) =
™
dw —e™™T
= | ———A : ) 1.
00) = [ Soirm A) s0<7 <3 (1.77)
For negative 7, we use the inverse Fourier transform of the lesser Green function
d o
G(r) = —iG=(=ir) = —i [ Toe NG (w) =
™
dw e 7
60 = [ Sor s A i —p<r<0. (1.78)
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1. Analytic Structure of Green and Correlation Functions

Similarly, the correlation function values at Matsubara frequencies read

dw X" (w)

T W—iw,

X, = —x(iw,) = / (1.79)

while the relations between imaginary-time correlation function and the spectral function
read

dv ev7 " '
dw —e 7
= — ! P 1.81
¥ = (L0 W) <o (1.81)

1.4.2. Matrix structure of spectral functions

In most of the previous relations, we omitted the basis indices &, ¥’ of A, ., and operator
indices A, B of correlation functions x’j p. This was intentional because all previous
relations hold for all indices, and we did not want to clutter the equations. Now we
examine this matrix structure more closely.

The transformation of creation and annihilation operators between any two single-
particle orthonormal basis sets {|,.)} and {|¢,)} reads

K

&= (Wuln) (1.83)

K

Therefore, we can transform the Green spectral functions between the two basis as
following

A/\,)\’ = Z Z <1;)\’wn> A/{,n’ (%«W}ﬁ ) (184)

which holds for spectral functions of both time and frequency. Arranglng the spectral
functions A av and A, . and the transformation coeflicients U, \ == (¢, w,\> in matrices,
we can rewrite the above equation compactly as

A =U'AU. (1.85)

We can also, in some special cases, derive a similar result for correlation functions. For
example, let us take the density operator in the configuration space p, (r) = Wi (r)¥,(r).
This can be related to the density operator in momentum space pgo == Y, €1, Cktqo aS

i(k—K)raf 4 _ 1 —iqr s
E e Crolhr = 3 e qoCko
k X kq

Y] Z ar (Z Ckack-l-ckr) = %Z o rﬁQU )

q
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1.4. The problem of analytic continuation

where q = k’ — k. In such cases,'* the relation between observable operators O, in the
single-particle orthonormal basis {|i,)} and the observable operators O, in the basis

{[x)} reads A o
Ox = (o) Oy . (1.86)

K

Therefore, we can transform the correlation spectral functions between the two basis as
following

X0s00 = D D () (Uurldha) X600, (1.87)
which can also be written compactly as
X' =Ux"U. (1.88)

Now we will show that the spectral matrices A(w) and x”(w) are Hermitian matrices
for each w. Using the definition of Green spectral function in the time domain, we can
write

\° (1.89)

In the frequency domain, this relation reads
AH’,{I(C{)) = [A,{/,,{(w)]* . (190)

Similarly, we find for correlation spectral functions

X0,.0,,/ (W) = [x’ém,,oﬁ (W)} : (1.91)

So indeed the spectral matrices are Hermitian.

1.4.3. Diagonal spectral functions

From the Hermiticity of the spectral matrices derived above, it follows immediately
that diagonal spectral functions are real. These diagonal functions have also other
properties that make their analytic continuation easier than non-diagonal ones. We
start by deriving the so-called Lehmann representation where a complete set of
eigenstates (complete in Fock space, so no restriction on particle number) is inserted in

14This is not general because observable operators transform normally as matrices not as vectors.
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1. Analytic Structure of Green and Correlation Functions

the definition of the spectral function. The spectral function of a Green function in the
time domain reads

Aut) = (E0)2],0) £ L (0)en(t)) = (e eem ] £ efeifitg, o)

=71 Z {(n\ e_BHethé,{e_théL In) + (n| e"BHéLethé,{e_th |n)}
n
=271 e { (] e, e fm) m €, In)
n,m

= (nl &L [m) (m| e Hée ™ In) }

_ 71 Ze,gEn (BB | (] &, [m) > £ BB |(1m] &, |n) 2}

=771 (e L e PEm) |(n] e, [m)[? Pt

Taking the Fourier transform, we get the desired Lehmann representation in the fre-
quency domain

Ap(w) =271 Z (e7PEn £ e7PEm) |(n] ¢, im)|* 276(w + B, — Ep) - (1.92)

n,m

Similarly, we find the Lehmann representation of the spectral function of a correlation
function

2

76(w + By — ) . (1.93)

Nb(w) = 27037 (45 — e ) |(n] O fm)

Inequalities We see easily that all terms in Eq. (1.92) (upper sign) are non-negative.
Therefore, we have

A(w) >0 : for the fermionic Green function case .
On the other hand, the terms in Eq. (1.92) (lower sign) corresponding to positive frequen-
cies are positive because then E,, > E, so (e #» —e=#Fm) > 0, while terms correspond-
ing to negative frequencies are negative because then E,, < FE, so (e #Fn — e=#Fm) < (.
Therefore, we have
sign(w)A(w) >0 : for the bosonic Green function case .

Similarly, using Eq. (1.93) we get

sign(w)x”(w) >0 : for the correlation function case .
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1.4. The problem of analytic continuation

Parity The spectral functions of correlation functions are odd

X'(w) = =x"(-w) . (1.94)

This can be seen from Eq. (1.93) by exchanging the dummy variables n,m and using
the fact that O is hermitian (because it corresponds to an observable). However, the
spectral functions of Green functions do not possess any parity in the general because
the creation and annihilation operators are not Hermitian. In correlation functions case,
the parity can be used to rewrite Eq. (1.79) as an integral over positive frequencies only.
We start by writing Eq. (1.79) as

* dww+iw
x-[ % )
Ww—zwn oo T WE Wi
The imaginary part vanishes because the integrand is odd while the real part of the
integrand is even and thus we can restrict the integral to positive frequencies

Xn / WMQJWQX()

This can be written in the following suggestive form, which highlights the non-negativity
of X" (w)/w and removes the singularity at w = 0 from the integral kernel

00 2 "
Xn:/ dw 207 X'(w) (1.95)

T wrt+w? w

We can also rewrite Eq. (1.80) as an integral over positive frequencies only. First we
need to employ the periodicity of the imaginary-time correlation function

1
X(r) = 5(?5( T)+ X(1 = B))
© dwewr=hH
/ 27r1—e—“5X(> /_Oogl—ewﬂ)((w)
dw e™7 ” © dw e A,
- | S - [ e e
/°° dw ™47 4 ¢~ (B-7)
oo 2m 1—ewh

X" (w)

Now the integrand is even, so we can restrict the integral to positive frequencies

o g —wT —w(B—T1)
X(T):/O dwe ” ¥ X'(w):0<7<p

T 1—e w8

Again, this equation can be written in a suggestive form that highlights the non-
negativity of x”(w)/w and removes the singularity at w = 0 from the kernel of the

integral
% do W [e—wT 4 e—w(ﬁ—T)} X”(W)
X(r) = — 0<T< 1.96
= [ L o< (1.96)
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1. Analytic Structure of Green and Correlation Functions

Sum rules The spectral function of a a Green function satisfies the following sum
rule as a direct result of (anti)commutation relations

A (t=0)=(¢uel £eéle,)=1= /;l—w Aw)=1. (1.97)
s

On the other hand, the integral of a spectral function of a correlation function vanishes
because it is odd. However, it satisfies the following sum rule which follows directly from
Eq. (1.79) evaluated at zero Matsubara frequency

/d_WM _x (1.98)

T w
Similarly, the spectral functions of a bosonic Green function satisfy a similar sum rule

/d_wM = —Go (bosons only) (1.99)

2T w

1.4.4. Non-diagonal spectral functions

Since the inequalities satisfied by diagonal spectral functions are valid in whatever basis
we choose, and the diagonal elements in some basis can be expressed in terms of non-
diagonal elements in another basis, the non-diagonal elements must also satisfy some
inequalities. Naively, one would think that there are an infinite number of inequalities for
each w because there are an infinite number of possible basis transformations. However,
we will show that those inequalities are limited and equal to the number of principle
minors of the spectral matrix.

For each w, these is a basis that diagonalizes A(w). Such a basis need not simultane-
ously diagonalize all matrices of different w, but the important thing is that for each w
such a basis exists. Then, the diagonal elements of these diagonal matrices represent the
eigenvalues of the spectral matrix, and the inequalities they satisfy imply the following

Fermionic Green functions: A(w) is a positive semidefinite matrix for all values of w.

Bosonic Green functions: A(w) is a positive semidefinite matrix for w > 0 and a
negative semidefinite matrix for w < 0.

Correlation functions: x”(w) is a positive semidefinite matrix for w > 0 and a negative
semidefinite matrix for w < 0.

where a matrix is negative/positive semidefinite if and only if all its eigenvalues are non-
positive/non-negative. Sylvester’s criterion gives a necessary and sufficient condition
for a matrix to be positive semidefinite or negative semidefinite. For spectral matrices
of fermionic Green functions, it says that all principal minors (i.e. the determinants
of the upper left matrices) are non-negative for any w . This also holds for spectral
matrices of bosonic Green functions and correlation functions when w > 0. On the
other hand, when w < 0, these matrices are negative semidefinite, so their principal
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1.4. The problem of analytic continuation

minors of odd dimension are non-positive while principal minors of even dimension are
non-negative [12, p.383]. Therefore, if the principal minors of spectral matrices satisfy
these limited number of inequalities in some fixed basis, then their diagonal elements
satisfy the necessary inequalities in any basis.

1.4.5. Analytic continuation as density estimation

In the thesis we are concerned with the analytic continuation of diagonal spectral func-
tions, so we conclude this chapter with an observation that prevail our solution to the
analytic continuation problem. The inequalities satisfied by the diagonal spectral func-
tions and their sum rules allows us to interpret the following functions:

A(w) (for fermionic Green functions case)
Alw)/w (for bosinic Green functions case)
X' (w)/w (for correlation functions case)

as density functions because each one is non-negative and has a finite integral. Using
this interpretation, the analytic continuation of diagonal Green and correlation functions
boils down to estimating a density-like function f(z) from an integral equation

o(y) = / dr K (y,2) f(z) |

where the left-hand side g(y) represents QMC data known numerically, while the integral
kernel K (y,x) is a continuous function known analytically. The kernels of the different
analytic continuation problems are summarized in Table. 1.2.
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1. Analytic Structure of Green and Correlation Functions

Description gly) = /drc K(z,y) f(x)
Fermionic Green > d —e VT
function/Time G9(r) = /OO o 1+ e—wB Aw)
Bosonic Green g(r) - = dw —we™T Aw)
function/Time A oo 27 1—ewh w
Correlation X(7) Fdw W [e™m + e 1] (W)
function/Time 4 0 1—ewh w
Fermionic Green < dw 1
function /Frequency Gn / L2 W, — W Aw)
Bosonic Green G = dw w Aw)
function /Frequency " 2 Wy, — W w
Correlation < dw 2w? X" (w)
. X, dw 2wt
function/Frequency T w? 4+ w? w

Table 1.2.: The integral equations of different analytic continuation problems. Time
relations hold for positive imaginary time only 7 € |0, 5[ , for which QMC
data is usually computed.
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2. Regularization Methods

As we saw in the last chapter, the problem of analytic continuation can be formulated
as a Fredholm integral equation of the first kind

mw=/Mﬂ@me, (2.1)

where the integral kernel K (y,x) is known analytically, a finite number of noisy data
values ¢g(y) are available, and we need to find the model f(z) which is known to be
non-negative.

Fredholm integral equations are well-known beyond the analytic continuation problem
and have applications in many different fields. The difficulty in solving this type of
equations is that they are inherently ill-posed [13]. When the data is computed, sharp
features in the model get smoothed and errors get damped due to the integration. The
inverse process, therefore, is problematic; small errors in the data may lead (depending
on the used method) to very large errors in the reconstructed model.

2.1. Discretization

The first step in solving a Fredholm equation is discretizing it to obtain an approximate
algebraic equation. Since QMC simulations provide a limited number of data values,
the discretization of the y coordinate is already determined by the available data values.
We assume there are m such values g(y;) and organize them in a column vector g € R™
(the case of complex data and complex kernels is handled below).

For discretizing the right-hand side, we introduce a grid in the variable x and evaluate
the integral by numerical quadrature

/d:c £(0) K (ous) = D0 A 1) Ka) (2.2)

We then build a column vector f € R” whose elements are \/Ax; f(z;) and a matrix
K € R™" whose elements are \/Az; K (y;, ;). The quadrature factors Az; could be
removed from f and included entirely in the matrix K. However, splitting them in the

earlier way has the advantage of using the euclidean norm of f as an approximation of
the L?-norm of f(x) i.e.

HfH%Z/If(fv)IQdI%fo: IE1* - (2:3)
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2. Regularization Methods

This discretization gives the following system of linear equations:
Kf=g, where feR" geR"” KeR"™", (2.4)

and the problem is finding the vector f.

Tip It is worth noting that when the integral extends from —oo to +0o (which is typ-
ically the case for analytic continuation) and the integrand is analytic in an open strip
around the real axis, it is recommended to use the trapezoidal rule (or the sightly differ-
ent, the rectangle rule) for discretizing the integral. Besides the simplicity of this rule, it
converges exponentially with the grid spacing when the above mentioned conditions are
satisfied (see Refs. [14, 15]). This discretization error is different from the cutoff error
which depends on the decay of the integrand.

Complex case In case of a complex kernel and complex data, like Green function in
the frequency domain, we can still represent the problem in real space. We split the real
and imaginary part of both the kernel and the data

/d:v f(@) [Ki(z,y) +1 Ka(z,y)] = g1(y) +1i ga(y) - (2.5)

Since the model is always real, the real part of the data is related only to the real part
of the kernel and the imaginary part of the data is related only to the imaginary part
of the kernel

/ de f(x) Ki(2,) = :(y) (2.6)
/ de f(z) Kol,y) = 92(y) - (2.7)

This way the original complex equation is equivalent to two real decoupled ones. These
real equations can then be discretized resulting in a real system of linear equations

Ky

g1 2
Kf=g, h feR" g= e R™ K=
g, Where g [g] [Kz

} € R¥™xm (2.8)
2

2.2. Least squares method and ill-posedness

Now our goal is to estimate the model vector f. The most naive and straightforward
way is solving Eq. 2.4 as any linear system of equations using the least squares method.
Least squares finds the model minimizing x*(f) := ||K f — g||* which represents how well
the model fits the data

fis = argmin x*(f) . (2.9)
fern
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2.2. Least squares method and ill-posedness

The least squares solution is found by setting the derivative of the fit! to zero

2

ddif A 0 < %(fT K'-g)(Kf-g)=0<K'K fis =K'g.
The last linear system is called the system of normal equations and it has a unique
solution when K has full column rank. However, when K is column rank deficient, which
is typically the case in analytic continuation, there is an infinite number of solutions.
This is because adding any vector from the null space of K to a solution does not change
the corresponding data. Therefore, it is common to take the least squares solution with
the minimum norm as the unique least squares solution

fis = argmin x*(f) and ||f||? is minimal . (2.10)
fern
Chapter 5 of Ref. [16] discusses the least squares problem and several numerically stable
algorithms for solving it.

Noise covariance Since QMC results are averages of many data samples, the central
limit theorem says that the noise on the data is distributed as a Gaussian with zero
mean. Let the covariance matrix of this Gaussian be Cov, which can be estimated from
multiple independent data samples, then it is better to define the fit as

() =(Kf—-g)'Cov ' (Kf—g).

Minimizing this fit function is called the Generalized Least Squares which is equivalent
to the ordinary least squares but gives more weight to more accurate data components.
The weight matrix W is obtained by taking the Cholesky decomposition of the inverse
covariance matrix Cov™! = WTW and the previous fit reads

V() = (K £ —g)"WIW(K £ —g) = [WK £ — Wg|?. (2.11)

So the generalized least squares can be obtained as the least squares of the modified
matrix WK and modified data Wg. Note that the modified data has now an identity
covariance matrix, so its noise is uncorrelated and has a standard normal distribution.

Using the least squares solution for solving the analytic continuation problem gives
typically an extremely bad solution with extremely large noise. The reason is that the
matrix K has a very large condition number; a concept which will be discussed in the
next section. For now, let us take an example and see ill-posedness in practice.

Test case 1 Consider the analytic continuation of a fermionic imaginary-time Green
function described by the following equation

Q(T):/dw —C

1+ e P

—TWw

Aw) . (2.12)

'We will use the term "fit” to refer to either y? or its square root y. The intended use should be
clear from the context.
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Figure 2.1.: Original spectral function of test case 1. It consists of three Lorentzian peaks
with the following half-widths : 0.2, 0.25, 0.2, and the following weights: 0.5,
1.0, 0.25 (left to right).

We take a spectral function composed of three Lorentzian peaks as shown in Fig. 2.1.
The integral is discretized using the trapezoidal rule on a uniform grid form —4 to +4
with 256 points; this same discretization is used for solving the inverse problem. Green
function values are generated at 64 equally-spaced 7 points in the interval [0, 3] with
B = 50. To simulate the effect of computational errors existing in QMC data, we put
white noise on the data G(7;) = G(7;) + ¢; where ¢; are normal random variables with
zero mean and standard deviation o = 10~*. The least squares solution in shown Fig. 2.2
and it is totally dominated by high-frequency noise. This noise has an order of 10° even
though the data noise is only of the order of 10~%! To understand this huge amplification
of noise, we turn to the singular value decomposition.

2.3. Singular value decomposition

An invaluable tool in studying ill-posed problems is the singular value decomposition
(SVD) of a matrix. Every matrix K € R™*" can be decomposed as

K=USV" (2.13)

where U € R™*™ and V € R™ " are orthogonal matrices 2, and S € R™*" is a diagonal
matrix with diagonal elements s; > ... > s, > 0 and p = min{m, n}.

The diagonal elements of S are called the singular values of K and they are ordered
descendingly. The number of non-zero values equals the rank of the matrix r and the
ratio of the largest singular value to the smallest non-zero one is the condition number

2A matrix Q is orthogonal if and only if QTQ = 1.
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2.3. Singular value decomposition

e T I i 5 3 4

w

Figure 2.2.: The spectral function of test case 1, reconstructed using the least squares
method (LS). High-frequency noise of the order 10° is dominating the solu-
tion rendering it useless.

of the matrix

K(K) = ? . (2.14)
The columns of V (denoted by v;) form an orthonormal basis of the model space R";
we call them the right singular vectors or modes for short. The columns of U (denoted
by u;) form an orthonormal basis of the data space R™; we call them the left singular
vectors. The first » modes are related to the first r right singular vectors by the following

relation
Kvi=s;uy :1=1,..r, (2.15)

which is simply a rewriting of the SVD relation (2.13). The remaining modes give zero
when multiplied by the matrix

Kvi=0 :i=r+1,..,n, (2.16)

and thus they form an orthonormal basis of the null space of K. We call these modes
free modes.

The singular values and vectors can be arbitrary for arbitrary matrices. However, for
matrices arising from discretizing analytic continuation kernels, we can identify typical
features of their SVD. First, the singular values decay exponentially to zero as shown
in Fig. 2.3. The smoother the kernel function K (y,z), the faster the decay [17, Sec.
2.3]. Second, the modes are similar to Fourier functions in the sense that large singular
values correspond to smooth modes, and the smaller the singular value o;, the more
oscillations in the corresponding mode v; [17, Eq. 2.14]. This is evident by checking the
modes themselves in Figs. 2.4 or their Fourier components in Fig. 2.5.

o1



2. Regularization Methods
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Figure 2.3.: A semi-log plot of the singular values of the matrix test case 1. The exponen-
tial decay of singular values is typical for the analytic continuation kernels.
They level off at the machine epsilon 1071, The dashed line represents the
threshold under which we consider singular values to be numerically zero.
Therefore, the numerical rank of this matrix is 41 and the condition number
equals approximately 104,

Numerical precision Due to the limited precision of floating-point operations, the sin-
gular values level off when their ratio to the largest singular value hits the machine
epsilon €. These non-zero but very small singular values and their corresponding modes
are probably not correct and their computation is corrupted by roundoff errors. There-
fore, one usually sets to zero all such singular values whose ratio to the largest one is
less than the machine epsilon times some constant.®> The numerical rank and condition
number are then computed accordingly.

2.4. Forward vs. inverse problem

Let us expand the model in the orthonormal basis of the modes

n

f=>) (vi'f) vi, (2.17)

i=1

then, using SVD as in Eqgs. (2.15) and (2.16), the corresponding data can be expressed
as a linear combination of the right singular vectors

g=Kf=>) s vi'"f)u. (2.18)
=1

3The constant depends on the estimate of roundoff errors. One common choice is max(m,n).
Another choice is 0.5y/m +n + 1 (see [18, p.795 and p.71]).
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2.4. Forward vs. inverse problem

Figure 2.4.: The first five modes of the matrix of test case 1. The number of zero crossings
increases as the index of the mode increases and the corresponding singular
value decreases. Remember that we included the quadrature factors /Ax;
in the matrix K, so we had to divide its modes by these factors before
plotting them here as a function of w.
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—2Q) 20 40 60 80 100 00

Matrix Mode

Figure 2.5.: Fourier components of the modes of the matrix of test case 1. Notice that the
leading modes are characterized by low frequencies, while later ones are char-
acterized by higher frequencies. Due to numerical degeneracy, free modes
(modes > 41) which correspond to zero singular values cannot be character-
ized by Fourier functions, but they are rather arbitrary linear combinations
of high frequencies.
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2. Regularization Methods

The projection coefficients of the data on U (we call them data coefficients) are the
same as the projection coefficients of the model on V (we call them model coefficients)
weighted by the corresponding singular values. Since the singular values are decaying,
the model coefficients vi f of later modes and their associated noise get suppressed in
comparison to the leading modes. The forward problem is, therefore, well-posed.

Let us look at the inverse problem. Given the data, we want to determine the model
minimizing the fit x* = | Kf —g||*. By expanding the model in the modes as in Eq. (2.17)
and expanding the data in the orthonormal basis of the left singular vectors as following

g = Z (u;"g) uy (2.19)

the fit reads

m
X —HZSZ (vi'f) w — Z (u5'g) ul?
j=1
m
= HZ(SiVin_ul Z u'g) ulf?
=1 =r

]_
= Z(sivin —u'g)*+ Z (u;"g)? .
=1 j=r
The first sum can be set to zero by choosing the first » model coefficients as

vilfig = (uiTg)/si ) (2.20)

The second sum corresponds to the part of the data laying outside the range of K and
is independent of the model. This sum should ideally be zero, however, due to noise and
discretization error, the data lies outside the range of the matrix and this sum determines
the minimum fit. Hence, the least squares model minimizing the fit reads

fis = Z 57 Vi (2.21)

The model coefficients of free modes has no effect on the fit, so we choose to set them to
zero to get the unique solution with the minimum norm |[|f|| as requried by Eq. (2.10).

Now we can understand the source of the ill-posedness of the inverse problem using
Eq. (2.21). The singular values are exponentially decaying, so their inverse is exponen-
tially increasing and any small noise on the later data coefficients u;'g gets extremely
amplified in computing the corresponding model coefficients viTfig. Since the later
modes have higher frequencies than the leading ones, high-frequency noise dominates
the least squares solution. As the condition number of the matrix gets larger, the gap
between leading and later singular values increases and the problem becomes more ill-
conditioned. This amplification of noise on the later modes is clear when comparing the
original coefficients v;Tf of test case 1 with the ones obtained using the least squares
method (see Fig. 2.6)
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Figure 2.6.: The mode expansion of the original model of test case 1 and its least squares
solution (LS).

Decay of singular values The singular values of analytic continuation problems decay
exponentially, therefore, they hit the machine epsilon very fast. As a result, the condi-
tion number is almost always of the order of the inverse of the machine epsilon and the
problem is extremely ill-conditioned. Since the condition number in these cases is deter-
mined by the numerical precision rather than the matrix under study, we cannot use it
as a measure of how ill-conditioned an analytic continuation problem is in comparison
to other problems. Therefore, we suggest using the decay of singular values as an al-
ternative measure. Assuming that the singular values decay asymptotically as O(e™"),
we use the factor a as a measure of ill-conditioning. It can be estimated from the log
difference of the last two non-zero singular values o ~ log s,_1 — log s,. The larger the
difference, the more ill-conditioned the problem. In Fig. 2.7, we plot the singular values
of three different matrices. All matrices have roughly the same condition number, but
the one with the fastest decaying singular values is the most ill-conditioned one.

Pseudoinverse The least squares solution can be expressed concisely in terms of KT,
the pseudoinverse of K

fis=> s (u'g) vi=K'g, (2.22)
=1

where the pseudoinverse is defined as

K" =V 8" U" with St := diag(s;*, ..., s, 1,0,...,0) € R™™ . (2.23)

ey Oy

It can be easily checked that the pseudoinverse equals the usual inverse for full rank
matrices.
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Figure 2.7.: The singular values of matrices resulting from discretizing Eq. 2.12 for dif-
ferent values of the inverse temperature 3. As the temperature increases (or

B decreases), the singular values decay faster and the matrix becomes more
ill-conditioned.

2.5. Truncated SVD

In the last section, we saw that the problem of ill-posedness lies in the later modes which
are sensitive to noise. An obvious way to regularize this problem is to truncate these
modes from the least squares solution i.e. restrict the sum in Eq. (2.21) to the first k&
modes

K
frsvp = Z s;' (ui'g) vi . (2.24)

=1

This is known as the truncated SVD method (TSVD). The truncation removes the noise
associated with the truncated part but it also loses the associated information. Since
the modes with higher indices have higher frequencies, the lost information is typically
about sharp features. The balance between the noise reduction and information loss can
be tuned by the truncation parameter k. Smaller £ leads to more truncation, less noise
and smoother solution and vice versa.

In Fig. 2.6, we see that the model coefficients of the least squares solution deviate
noticeably from the original ones starting from the 14th mode. Accordingly, it is best
to truncate them and set k = 13. Choosing a higher value of the truncation parameter
leads to including noisy coefficients in the solution (overfitting) while choosing a lower
value unnecessarily discards good coefficients (oversmoothing) (see Fig. 2.24). In this
case, we utilized our knowledge about the original model to determine the optimal value
of the truncation parameter. However, this information is not available in practice and
we have to resort to some other criterion.
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2.5. Truncated SVD

Figure 2.8.: TSVD solutions of test case 1 for different values of the truncation parameter
k. Based on our knowledge about the original model, the best value is
k = 13. Lower values lead to oversmoothing while higher values lead to
overfitting of noise.

2.5.1. Truncation criterion

We argued before that the noise on analytic continuation data is Gaussian with zero
mean. Without loss of generality,* we further assume that the noise on different com-
ponents is uncorrelated and has the same standard deviation o

Snoisy = Bexact + € where e ~ N (0,0°T) . (2.25)

Since the matrix U is an orthogonal matrix, the noise on the data coefficients u;'g is
also Gaussian with with zero mean and standard deviation o

uiTgnoiSy = 0 Gexact + € where ¢ = (u;'e) ~ N(0,0?) . (2.26)

It is clear then that when the absolute value of a coefficient is large enough i.e. [u;*g| >
Co for some constant C, this coefficient is reliable and its relative error is small. There-
fore, we choose the truncation parameter k, such that these reliable coefficients are
retained while noise-dominated ones are discarded.

For example in Fig. 2.9, we show the noisy data coefficients of test case 1. Using bo
as a threshold for trustworthy coefficients, we find that the optimal truncation param-
eter is k = 13. This is the same value we got from our knowledge about the original
model showing that this criterion is indeed a good heuristic for choosing the truncation
parameter. Note that the resulting truncation parameter k is not very sensitive to the
choice of the threshold C' (here C' = 5) due to the exponential decay of the coefficients.

4Remember that when the covariance matrix is not the identity, we can always take the Cholesky
decomposition of the inverse covariance matrix Cov~! = WTT, and solve the modified problem with
matrix WK and data Wg whose noise is uncorrelated and has a standard normal distribution.
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Figure 2.9.: Absolute value of exact and noisy data coefficients of test case 1. The noise
is Gaussian with zero mean and ¢ standard deviation. The exact coefficients
decay to zero, while the noisy ones decay till they reach noise level o and
then fluctuate around it. Notice how large noisy coefficients are very close to
the exact ones and the deviation becomes significant only when their values
drop to near the noise level.
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Figure 2.10.: Absolute value of exact and least squares model coefficients of test case
1. The exact coefficients decay slowly to zero while the ones from least
squares grow exponentially as fast as the singular values. The reason is
that the error on these coefficients is inversely proportional to the singular
values.
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2.5. Truncated SVD

Since ill-posedness is caused by the exponential decay of the singular values, one may
then ask at this point: should not the singular values enter somewhere in the above
criterion? They do but rather implicitly. To see this, imagine we generate the data
corresponding to some model using two different matrices; one is more ill-conditioned
than the other. Assuming the same level of noise in the two cases, the data coefficients
produced by the ill-conditioned matrix would decay much faster to the noise level than
the other one. Therefore, we have to truncate more coefficients in the ill-conditioned
case, and the more ill-conditioned the problem is, the more we have to truncate.

Another way of illustrating the role of the singular values is reformulating the trun-
cation criterion in terms of the model coefficients of the least squares solution. These
coefficients are related to the data coefficients by the inverse of the corresponding singu-
lar values (see Eq. 2.20) and thus their errors are inversely proportional to the singular
values

Vi g = Vi foact + € where €& = (u;'e/s;) ~ N(0,0%/s?) . (2.27)

Therefore, the error dominates those model coefficients whose absolute values are less
than a threshold |v;Tf| < Co/s;. The more ill-conditioned the problem is, the faster this
threshold grows, and the smaller the number of reliable coefficients is (see Fig. 2.10).

2.5.2. Noise estimation

The previous discussion about the truncation criterion provides some insight into es-
timating the noise level o from the data vector itself. The exact data coefficients are
related to model coefficients by the singular values

uiTgexact - VinexactSi . (228)

Assuming that the exact model has a reasonable norm and knowing that singular values
are practically zero for 7 > r, the corresponding exact data coefficients are also practically
zero and the noisy data coefficients are plain noise

Wi Groisy A € r<i<m. (2.29)

Therefore, we can use the variance of these coefficients to estimate the noise variance as

m

> (05" Buoisy)? (2.30)

i=r+1

9 1

where we have used the formula for estimating population variance with a known mean
0. This provides a very good estimation of the noise in practice and can also be used
to cross-check other estimates of the noise. However, it is very important to remember
our assumption that the noise on different components is uncorrelated and has the same
standard deviation i.e.

e~ N(0,5°T) . (2.31)

If this assumption is not satisfied, then the above estimation is not reliable.
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Figure 2.11.: Absolute value of data coefficients of the symmetric model shown in the
inset (the kernel and noise level are as in test case 1). Note that the
exact value of every other coefficient is practically zero. These coefficients
correspond to anti-symmetric modes and are very susceptible to noise. By

an appropriate choice of a threshold, they are set to zero in selective SVD
method.

2.5.3. Selective SVD

Truncated SVD assumes that the leading coefficients are the reliable ones and that they
get worse as the index increases. Then it is sufficient to find the optimal truncation
position to discard the noise-dominated ones. This is usually a reasonable assumption
but we can construct cases where reliable and noise-dominated coefficients are mixed. For
example, let us make the model of test case 1 symmetric around zero. Then its projection
coefficients on anti-symmetric modes are vanishing. Due to their small values, these
coefficients are sensitive to noise. So here we have a case of alternating good and bad
coefficients where a simple truncation does not discard all noise-dominated coefficients
(see Fig. 2.11). A better suited approach here is the so-called selective SVD (SSVD)
where all noise-dominated coefficients are set to zero [17]

fssvp = Z s;t (ui'g) vi . (2.32)

|uiTg|>Ccr

Nevertheless, results for the truncated SVD is usually very close to those for the selective
SVD because the noisy model coefficients that are set to zero by SSVD are already small
compared to the other coefficients, and thus it does not make a big difference whether
they are actually zero or have a very small noisy value.
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2.6. Tikhonov regularization

Figure 2.12.: Tikhonov solutions of test case 1 for two different values of a. The first
value is obtained using the discrepancy principle while the second one is
obtained from the L-curve.

2.6. Tikhonov regularization

Truncated SVD belongs to a class of regularization methods known as spectral filtering
methods where the solution is similar to the least squares one but with filtered terms

fﬁltered = Z(bis;l (uiTg) Vi . (233)
i=1
The filter function of truncated SVD has a sharp cutoff and is defined as

STSVD _ 0 forz'g.k' . (2.34)
1 otherwise

Alternatively, we can use a smoother filter that depends on the singular values as in
Tikhonov regularization which applies the following filter

2

Thikh S;
. — , 2.35
0 s2 4 a? (2.35)

where « is an adjustable parameter. Given this filter function, terms corresponding
to very small singular values are damped significantly (limg, o ¢; = 0), while the ones
corresponding to large singular values are hardly modified (limg, o, ¢; = 1). Substituting
in Eq. (2.33), we get the Tikhonov solution

r

Si
frin = Z 212 (u'g) vi. (2.36)

=1
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The Tikhonov solution can also be obtained as the unique solution of the following
equation
(K'K + 1) fry, = K'g . (2.37)

To prove it, we first note that this system has actually a unique solution because the
matrix KTK + oI is positive definite and thus non-singular. Using the singular value
decomposition of the matrix K = USVT and utilizing that U and V are orthogonal
matrices, we write

V(S'S + o’ ) VT fry = VSTU g
= (STS + ’I)V? fryy, = STU'g

Since the matrix STS + oI is diagonal with diagonal elements s? + a2, we have
(57 + &®)vifran = si(u;' g) |

and the solution is indeed the Tikhonov solution (compare to Eq. 2.36).
It is worth noting that Eq. (2.37) is the normal equation of a least squares problem
with a modified matrix and modified data

(ar) = (5)

This formulation has the advantage of getting Tikhonov solution without an explicit
computation of the singular value decomposition which can be a huge computational
effort for large scale problems.

We can also easily rewrite Eq. (2.38) as the following minimization problem

2

(2.38)

friq = arg min
fERP

friw = argmin x2(f) + o2 ||f||* | (2.39)
feRn

This allows us to interpret the Tikhonov solution as the one that balances between
the fit to the data and the model norm. The balance is controlled by the regularization
parameter «. When « is very small, we approach the least squares solution which fits the
data very well but has a very large norm. As « increases, the solution becomes smoother
with smaller norm but worse fit. We will discuss below two commonly-used heuristics for
choosing the optimal «. It is worth noting that Tikhonov regularization can generalized
by replacing the model norm in the last equation with some other bilinear function of
the model vector.

Discrepancy principle Assuming that the noise on the data is uncorrelated and has
standard deviation o as in Eq. (2.25), the expected norm of the noise is ||e|]| = /mo,
where m is the size of data/noise vector. The discrepancy principle simply says that a
good model would produce data such that the residual vector K f — g is dominated by
noise. Therefore, we choose « such that the norm of the residual (i.e. the fit) roughly
equals the expected norm of the noise vector. For safety, it is better to be slightly larger
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Figure 2.13.: Fits of Tikhonov solutions versus « for test case 1. Notice how the fit

increases monotonically with «. According to the discrepancy principle,

the best value of « is the one where the fit equals a multiple (here twice)
of the expected norm of the noise (dashed line).

by some factor C. In other words, find « such that [|[K f — g|| = C'y/mo which has a
unique solution because the residual norm increases monotonically with a. In Fig. 2.13,
we plot the fits of Tikhonov solutions of test case 1 . Setting C' = 2, we get the optimal
value v = le—2 and the corresponding solution to is shown in Fig. 2.12. Ref. [19] uses
a similar approach for determining the regularization parameter of MaxEnt.

L-curve The formulation of Tikhonov solution as a balance between the data fit and
the model norm (see Eq. 2.39) motivates the L-curve method [20]. This method suggests
plotting the model norm ||f|| versus the fit x(f) on a log-log scale for different values
of . The curve will have an L-shape and the value of « at the corner of the L-curve
is the best value balancing between the data fit and the model norm. In Fig. 2.14, we
show the L-curve for test case 1. For small «, the solution fits the data very well but is
dominated by very large noise. Therefore, the fit saturates around the best possible fit
while the model norm explodes. For large «, the fit gets worse as more of the leading
modes get filtered out while the model norm plateaus around the norm of the exact
model before it drops to zero. The optimal value is the one at the corner a = 5e—4 and
its corresponding solution is plotted in Fig. 2.12.

L-curve Vs. discrepancy principle The discrepancy principle is more conservative
(especially with a large constant C'), while the L-curve tries to get the most out of
the data. This means that the L-curve will outperform the discrepancy principle when
the actual noise happens to be smaller than expected. On the other hand, it may as
well over-fit noise that does not affect the model norm dramatically. For example, in
Fig. 2.12, we plot the Tikhonov solutions of test case 1 obtained by the two methods. The
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Figure 2.14.: L-curve for test case 1; a log-log plot of the model norm versus the data fit
of Tikhonov solutions for different values of a. According to the L-curve
heuristic, the best value of « is the one corresponding to the corner.

L-curve gives a lower value of a which leads to some extra noise-related features in the
solution, while the discrepancy principle gives a smoother solution with no overfitting.
Both methods are heuristics and which works better depends on the test case. As a
general strategy, we prefer using the discrepancy principle when a good estimate of the
standard deviation of the noise is available, while we resort to the L-curve when no such
estimate exits.

2.6.1. Differential formulation of Tikhonov regularization

Interestingly, we can formulate the Tikhonov solution as an approximation to the fol-

lowing differential equation
df

7=

with the least squares solution as an initial condition

— (K'K) " £(t) (2.40)

£(0) = fi5 = K'g , (2.41)

where the symbol * denotes the pseudoinverse defined in (2.23) and ¢ is a fictitious time
parameter.
Let us apply the implicit Eular scheme with time step At to this differential equation

At (f — f4) = — (KTK) " £l (2.42)
= K'K (f' — ") = —A¢ £+ (2.43)
= (K'K+ At ) flit = KTK (2.44)
~~ —~—
a? gti
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Comparing this relation to Eq. (2.37), we see that taking a single time step At is equiv-
alent to applying Tikhonov regularization to the model of the previous time step with
a regularization parameter a = v/At. We discovered this relation independently and
found out later that a closely related connection has already been established in the
context of image deblurring [21].

The differential equation (2.40) can even be solved exactly with the help of the singular
value decomposition and it leads to yet another spectral filtering method. Using SVD,
we can write

K =USVT = K'K = V§?V' = (K'K)" = v§+*VvT (2.45)
Substituting in the Eq. 2.40, we get
df

- = —VST*VT £(1) (2.46)
df
= Vi = —STVT £(t) (2.47)
d
== =8 c(t), (2.48)

where we denoted model coefficients as ¢ == Vf. Since the matrix ST is diagonal with
diagonal elements s; %, the differential equations of different coefficients are decoupled
and can be easily solved
de;
T s 2(t) (2.49)
dy
= ¢(t) = ¢(0) et (2.50)

Using the initial condition (2.41), we see that ¢;(0) are nothing but the least squares
coefficients and the solution is a filtered least squares solution

£(t) = e [s77 (wi"g) vi] (2.51)
i=1
So each model coefficient starts with its least squares value and then decays exponen-
tially with a lifetime that equals the square of the singular value. Therefore, modes
corresponding to small singular values die out quickly while the ones with larger singu-
lar values survive longer.

2.7. Non-negative least squares

The previous methods are general and apply to all inverse problems. Now we utilize
a simple, yet important, piece of knowledge about the analytic continuation problem:
the non-negativity of the model. The first step is restricting the least squares method to
non-negative models

funes = arg min x*(f) (2.52)
feR™ £>0
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Least Squares Solution

Non-negative Least
Squares Solution

Figure 2.15.: An illustration of the difference between the least squares solution and
the non-negative least squares solution for a two-dimensional case. The
ellipses represent the contour of the fit function that least squares methods
try to minimize. Least squares searches the whole plane for the minimum
fit, while non-negative least squares restricts it search to the non-negative
quadrant.

12

—  Exact
10 — NNLS

Figure 2.16.: The spectral function of test case 1, reconstructed using the non-negative
least squares method (NNLS). The solution has roughly the same zeroth,
first and second moments of the exact spectral function.
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Figure 2.17.: Original spectral function of test case 2. It consists of two Gaussian peaks;
both have width 0.1 and weight 0.5.

which is known as the non-negative least squares solution (NNLS). Fig. 2.15 shows a
simple illustration of the difference between the least squares solution and the non-
negative least squares solution for a two-dimensional case. The two solutions can, in
principle, be the same but it is highly unlikely because the noise typically throws the
least squares solution outside the allowed region.

In Fig. 2.16, we show the non-negative least squares solution for test case 1. This
solution is clearly a huge improvement over the least squares (LS) one shown in Fig. 2.2.
While the LS solution is completely useless with huge oscillations of the order 10°, the
NNLS solution, although still pretty bad, captures at least some information about the
model. NNLS solution has the same order of magnitude as the original model (similar
zeroth moment) and is concentrated in roughly the same region where the original is
concentrated (similar first and second moments). So simply taking the non-negativity
constraints into account already provides some kind of regularization. In other cases, it
can even provide more information as in the following test case.

Test case 2 The setting of this test case is exactly the same as test case 1 except that
the exact spectral function is composed of two sharp Gaussian peaks separated by a large
gap (see Fig. 2.17). The non-negative least squares solution is shown in Fig. 2.18 and
it has several sharp peaks; two of them correspond to the original peaks. The positions
of these are quite accurate but their widths are shrunk to the grid spacing. This sharp
structure is typical in NNLS solutions and can be understood intuitively from Fig. 2.15,
where the NNLS solution usually lies on the boundary of the non-negative region and
thus has many zeros. Mathematically, it is the result of KKT conditions explained in
the next section (see Eqs. 2.54 and 2.55).

We can see the regularizing effect of non-negativity more clearly by checking the data
produced by the NNLS solution gnnps = Kfynrs and comparing it to the exact and
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Figure 2.18.: The spectral function of test case 2 reconstructed using the non-negative
least squares method (NNLS). The large two peaks in the NNLS solution
correspond to the original peaks and are located roughly where they should
be. However, no information about their widths is available in the NNLS
solution.

noisy data. In Fig. 2.19, we plot the the projection coefficients of these data vectors
on the right singular vectors U for test case 1. While the noisy data coefficients level
off around the noise level, the NNLS data coefficients have a similar decay to the exact
data, and despite the differences between the two, NNLS gives us the right asymptotic
behavior of the exact coefficients. The non-negativity is even more informative for test
case 2 whose plot is shown in Fig. 2.20. In this case, the constraints give the right values
of extra 8 coefficients below the noise level.

There are different algorithms for solving the non-negative least squares problem.
The algorithm of Lawson and Hanson [22] was the first to appear in the literature. We
explain this algorithm and why it works, and suggest a modification that improves its
convergence. Numerical stability and issues caused by round-off errors are also discussed.
For an overview of other non-negative least squares algorithms, refer to [23].

2.7.1. Karush-Kuhn-Tucker conditions

We can see NNLS as a minimization problem of the following quadratic objective function
subject to inequality constraints®

1
argmin (f) = ifTKTKf —fTK'g
f

st. £>0

(2.53)

®You can easily check that this is equivalent to minimizing x?(f) = 2¢(f) +gTg. Also recall that all
quantities are real and that a complex case can be handled as a real one of twice the size (see Eq. 2.8).
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Figure 2.19.: Absolute value of exact, noisy and NNLS data coefficients of test case 1.

Using only the non-negativity constraints, NNLS method helps us getting
the right asymptotic decay of the exact coefficients.
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Figure 2.20.: Absolute value of exact, noisy and NNLS data coefficients of test case 2.
Notice how NNLS method retrieves the exact values of coefficients 15-22,
although the corresponding noisy data coefficients are dominated by noise.

69



2. Regularization Methods

The Karush-Kuhn-Tucker (KKT) conditions provide necessary conditions for the solu-
tion of non-linear optimization problems [25]. These conditions are also sufficient [24]
when the objective function and the inequality constraints are convex, which is the case
here.

Applying these conditions to NNLS, we find that an n-vector f is a solution of Eq. 2.53
(or equivalently Eq. 2.52) if and only if for each index i either:

fi=0, A;>0 (active) (2.54)
fi>0, A, =0 (passive) (2.55)

where A := KT (g — Kf) is the negative gradient vector of 1 (f).

These conditions allow us to divide the indices of the solution into two sets: an active
set (Eq. 2.54) and a passive set (Eq. 2.55). The active set refers to the indices where the
constraints are active, and consequently the solution is zero. The passive set refers to
the indices where constraints are passive, and hence the solution is strictly positive. The
negative gradient is positive for the active set which means that trying to minimize the
residual in any of these directions will violate the constraints. On the other hand, the
gradient is zero for the passive set, so the solution has its optimal values along the passive
directions. Consequently, the NNLS solution is nothing but the unconstrained
least squares solution using the passive set components only.

2.7.2. The algorithm

Using the observation from last section, a naive algorithm is to compute the uncon-
strained least squares solutions for all possible passive sets (all subsets of the index set
{1,...,n}). Some solutions will have some negative components while others are strictly
positive. Among these strictly positive solutions, the NNLS solution is the one with the
minimum residual. This naive algorithm takes a finite time but it has an exponential
complexity because the number of possible passive sets is 2".

The Lawson-Hanson algorithm does much better by starting from an empty passive
set and updating this set to get a lower residual at each step. The algorithm stops when
KKT conditions are satisfied i.e. the gradient is negative for all indices in the active set,
and any further reduction in the residual would lead to violation of the constraints. In
case of degeneracy, this algorithm converges to one of the multiple solutions. Here is a
pseudocode of the algorithm:

1: function NNLS(K, g)

2: f<0

3: P« {} > passive set

4: Z+{1l,...,n} > active set

5: A+ KTg > initial negative gradient vector

6: while Z # ¢ and max A; > 0do > loop till KKT condition satisfied

1€

7: t < argmax A, > choose an index to move to the passive set
i€z

8: Z+ Z \t
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9: P+ PuUt

10: '+ LS(K”,g) > least squares with the passive set
11: while Ilré%l fi<0do > loop till constraints are satisfied
12: o miin fi/(fi—=fH:fl<0,ieP > interpolation factor
13: f+—f+af 1) > interpolate
14: Update P and Z > move indices of zero values form P to Z
15: '+ LS(K”,g) > least squares with the passive set
16: end while

17: f+f > update solution
18: A +— KT (g — Kf) > new negative gradient vector
19: end while
20: return f

21: end function

The algorithm has two loops: an outer one and an inner one. The outer loop keeps
iterating till the KKT conditions are satisfied. Each iteration reduces the residual of the
solution vector f by moving the index of the maximum negative gradient to the passive
set. The unconstrained least squares solution f’ using the new passive set has definitely a
lower residual because there are more degrees of freedom and the gradient was non-zero.
At the end of each iteration, the vector f¥ is the unconstrained least squares solution
using the passive set and it should be strictly positive (outer loop invariant). If the
candidate solution f’ is non-negative, this iteration of the outer loop has achieved its
goal and the candidate solution is used as the current solution. Otherwise, the candidate
solution f’ lies outside the allowed region and it is used by the inner loop to get a new
allowed solution with lower residual than the current one f. This is done by finding
the intersection point of the line connecting f and f’ with the boundary of the allowed
region (see Fig. 2.21). The intersection point has a lower residual than the current
solution f because it is closer to f’. It also has fewer passive components because it lies
on the boundary. This intersection point is then used as the current solution f for the
next iteration of the inner loop. Hence, each iteration of the inner loop moves some
components to the active set and reduces the residual. The inner loop keeps iterating
till the unconstrained least squares solution is positive.

Convergence and computational cost The convergence of the algorithm is guaranteed
by the finiteness of both the inner and outer loops. The inner loop will have at worse
k—1 iterations,® where k is the size of the passive set upon entering the loop. Regarding
the outer loop, the residual gets lower each iteration, and thus the solution f and its
corresponding passive set P are distinct from all their previous values. This proves the
finiteness of the outer loop because there are only a finite number of values for P, namely
2" the number of the subsets of {1,...,n}. Like the naive algorithm, this algorithm also
has an exponential worst case complexity, but in practice it is quite fast with a few

6Tt is k — 1 rather than k, because the recently added index to P is guaranteed to be positive by
Lemma [22, 23.17].
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Figure 2.21.: 2D illustration of the inner loop of the NNLS algorithm. Upon entering
the first iteration, f; is the current solution and f; is the candidate solution
(the unconstrained least squares solution). The point f; is the interpolation
between f; and f] that is closest to f; and still non-negative. It is used
as the current solution for the second iteration. Solving the unconstrained
least squares solution in the second iteration gives f; which is already non-
negative, so the loop terminates with f} as the current solution.

hundred iterations for typical test cases. We observed that reducing the noise level o to
very small values like 107® increases the number of iterations considerably. Also note
that the cost of each iteration increases with the size of data m because it affects the
cost of least squares solution at steps 10 and 15.

2.7.3. Modified algorithm

At step 7 of the NNLS algorithm, the index with the maximum value for the negative
gradient is chosen to be moved from the active to the passive set. This is inspired by the
gradient descent algorithm which takes successive steps in the directions of the negative
gradient to reach a local minimum. NNLS, however, does not take the direction of the
negative gradient but the direction of the component on which the negative gradient has
the maximum projection.

This choice is not only non-optimal, but even arbitrary in some sense! Let us see how.
Solving Eq. 2.52 can be done equivalently by solving a scaled problem and then rescaling
the solution back, i.e.

fNNLS = D_larg min ||KDf, - g”2 (256)

fER™,£>0
where D is a strictly positive diagonal matrix. By making the i-th diagonal element of
D arbitrary large, we can force the algorithm to choose the i-th component to be moved
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2.7. Non-negative least squares

to the passive set regardless of the current solution or the matrix K (as long as A; is
positive, of course).

We propose a minor modification that leads to a more reasonable choice of the index.
Rescale the components of negative gradient vector by the norms of the corresponding
columns of the matrix K. Then choose the index with largest value of the new rescaled
vector. This choice of the index gives the lowest fit conditional on the values of the
current passive variables, which can be proven easily as following.

Lowering the fit conditionally using an additional passive variable f; means fitting the
residual vector r := g — Kf using K, the i-th column of the matrix K. This is a least
squares problem with one variable

K'lr

and its fit reads
(Kir)?

7

—Kz * 2: T - .
Hr f’L H rr :[{?‘:[{Z

(2.58)

Therefore, we can minimize this fit by choosing the index that maximizes Kir/\/K}K;
which is nothing but the aforementioned rescaled negative gradient.

This modified algorithm chooses the same index even for a rescaled matrix, so it does
not suffer from the same arbitrariness as the original algorithm. Moreover, we find that
in practice, the modified algorithm converges in a smaller number of iterations than the
original one. Sometimes the reduction is just a few iterations, while in other cases it can
be an order of magnitude. Therefore, we recommend to always use this modification
which can be applied easily to existing implementations of the original algorithm. Simply
normalize the columns of the matrix before passing it to the algorithm, and then rescale
the returned solution by the norms of the columns.

2.7.4. Numerical stability and round-off errors

e Comparison of the maximum negative gradient (or the rescaled one for the modified
algorithm) with zero at step 6, should be replaced by a comparison with some
tolerance value.

e When updating the passive and active sets at step 11, any component of f that is
less than some tolerance, should be set to zero and moved to the active set.

e Rescaling the columns of the matrix K” by their norm and ordering them such
that the recently added column is at the end, provides more numerical stability to
the least squares solutions at steps 10 and 15.

e Computing the negative gradient at step 17 involves computing the residual vector
g — Kf. It is more numerically stable to compute this vector by projecting g
onto the range of the matrix K”. QR decomposition provides a vector basis set
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for this range. This does not lead to any computational overhead because this
decomposition is already needed for the least squares solution at steps 10 and 15.

e According to Lemma [22, 23.17], f; should theoretically be greater than zero at
step 11. In practice, it may be zero or negative which indicates numerical errors
in computing A,;. Therefore, we should check that f; is greater than zero before
entering the inner loop at step 11. If it is not, we set A; to zero and go back to
step 7 to find another index t.

e If the matrix K is numerically deficient, adding an index ¢ to the passive set
may lead to a higher residual. Inasmuch as the negative gradient component A,
is greater than zero, the fit should decrease in exact arithmetic. However, it may
increase slightly due to round-off errors. Since the fit is not guaranteed to decrease,
the algorithm may get stuck by moving a set of indices between the passive and
active sets back and forth without converging. One idea is to enforce the reduction
of the fit by rejecting any step that does not reduce it. In practice, we found
that this may lead to sub-optimal solutions. Instead we allow the fit to increase
temporarily but prevent getting stuck in an infinite loop by the following trick.
Whenever an index reenters the passive set, the fit should be different from the
one calculated upon the previous entrance of the same index. This trick guarantees
convergence even when the fit increases due to numerical errors.

e The least squares solution at steps 10 and 15 requires a QR decomposition of
the matrix composed of the passive set columns. Updating the QR decomposition
when adding or removing columns is more efficient than computing the decomposi-
tion from scratch [22; Ch.24]. Surprisingly, we found that updating also solves the
above problem with numerically deficient matrices and the numerically-computed
fit is always decreasing. We do not have an explanation for this "numerical regu-
larization” effect, but we suspect that it is similar to the regularization that comes
implicitly with iterative methods [17, Ch.6].

2.8. Non-negative Tikhonov

We can impose the non-negativity constraints on Tikhonov regularization to get what
we call non-negative Tikhonov solution (NNT)

funr = argmin x3(f) + o ||f||” . (2.59)
feR" £>0

Obtaining this solution does not require any new algorithm. Remembering from Eq. (2.38)
that the Tikhonov solution is a least squares solution of a modified problem, we can sim-
ply use any NNLS algorithm to solve the modified problem and get the non-negative
Tikhnonv solution. The modification is straightforward: the data is padded with ze-
ros and the matrix is padded with an a multiple of unity. Also similar to Tikhonov
regularization, the optimal a can be determined using some heuristic like the discrep-
ancy principle or the L-curve. It is worth noting that as o — 0, the NNT solutions
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Figure 2.22.: Non-negative Tikhonov solutions of test case 1 for two different values of
a. The first value is obtained using the discrepancy principle while the
second one is obtained from the L-curve.

approaches the NNLS solution. Therefore, the solution norm in the L-curve reaches a
moderate value (the norm of NNLS) instead of getting very large as in usual Tikhonov.

In Fig. 2.22 we show the NNT solutions of test case 1 for the two values of o obtained
by the discrepancy principle and the L-curve. Comparing these with the earlier Tikhonov
solutions (see Fig. 2.12), we see that the differences are minuscule. Basically, the negative
parts of Tikhnonv solutions are set to zero. NNT does not give us more information
here because the Tikhonov solutions for this test case are mainly positive to start with.

Nevertheless, there are other cases where the non-negativity plays a greater role and
NNT clearly outperforms Tikhnonv. For example, we show in Fig. 2.23 non-negative
Tikhonov solutions of test case 2. NNT successfully captures the two peaks and locates
them at roughly the right positions with widths depending on the regularization param-
eter a.. In contrast, usual Tikhonov gives oscillatory solutions around zero that do not
show clearly the original two-peaks structure (see Fig. 2.24).

Like we did with NNLS, we can assess the role of non-negativity constraints by com-
paring the data coefficients ulg of the different methods. In Fig. 2.25, we plot the
coefficients for test case 1. Although the NNT coefficients matches the Tikhnonv ones
initially, the non-negativity constraints prevent the later ones in NNT from being sup-
pressed as much as in Tikhnonov. This effect is even stronger for Test case 2 whose
plot is shown in Fig. 2.26. In this case, only robust coefficients (the ones above noise
level) are the same for NNT and Tikhnonv while the rest are completely different. We
can actually use this difference between usual Tikhnonv and non-negative Tikhnonv
solutions as a measure of the importance of non-negativity constraints in any specific
case under study. This may help us predict a priori whether stochastic sampling, a
computationally-heavy method that relies strongly on non-negativity, would provide a
better solution than simple methods before performing the actual calculation.
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Figure 2.23.: Non-negative Tikhonov solutions of test case 2 for two different values of
«. The first value is obtained using the discrepancy principle while the
second one is obtained from the L-curve.
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Figure 2.24.: Tikhonov solutions of test case 2 for two different values of a. The first
value is obtained using the discrepancy principle while the second one is
obtained from the L-curve.
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Figure 2.26.:

2.8. Non-negative Tikhonov
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Absolute value of data coefficients of test case 1. The leading coefficients
of NNT data match the ones from Tikhnonov, but the non-negativity pre-
vents the later ones from being suppressed as much. For both NNT and
Tikhnonv, we used a = le—2.

10°
1072}
10l AN £ N2 N N NP
10|
10° |
10710 |
1012 |
107 |111T &Tikn|
1070 ;" gn]

10718
0 5 10 15 20 25 30 35 40 45
i

- |uiT gexact|

- |uiT gnoisy'

Absolute value of data coefficients of test case 2. Except for the leading
robust coefficients, the NNT coefficients are completely different from the
Tikhnonov ones. This suggests a greater role of non-negativity constraints
in this test case. For both NNT and Tikhnonv, we used a = le—2.
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2.9. Perturbed data sampling

We saw that NNLS overfits the data leading to very sharp peaks. This is overcome in
NNT by minimizing the norm alongside the data fit. We propose here a new method
that avoids overfiting by averaging over different NNLS solutions using different pertur-
bations of the data. The perturbed data samples are obtained by adding extra noise to
the originally noisy data. Then we solve the non-negative least squares problem with
each perturbed data sample and average their results. Each of these non-negative least
squares solutions overfits its corresponding perturbed data sample, but it fits the original
data only to the extent of how close the perturbed sample is to the original data. Al-
though, each NNLS solution has very sharp structure, we hope that with an appropriate
choice of the perturbing noise, spurious structure would average out and only the "real”
structure would survive. We call this method perturbed data sampling (PDS) and it can
be expressed mathematically as as a weighted integral over perturbing noise

fPDS = /dG P(E) fNNLS (g + 6) y (260)

where P(e) is the probability of obtaining a noise vector e.

Since the original noise is usually assumed to be Gaussian, uncorrelated and has
standard deviation o (see Eq. 2.25), we tried first drawing the perturbing noise from
this Gaussian and found that the resulting PDS solution was still overfitting the data.
We hoped then that by increasing o of the perturbing noise, we could sample a larger
set of perturbed data and get less overfitting. PDS solutions get indeed smoother as
o increased, but they also have extra structure that did not exist in the exact model!
The reason is that PDS with larger o is averaging over worse set of solutions because
it becomes more likely to obtain noise vectors with large norms than ones with smaller
norms. This may seem counter-intuitive at first sight, since the Gaussian distribution
always gives higher probability for smaller norms. However, one should remember that
there are many more vectors with large norms than ones with smaller norms giving an
overall larger probability for large norms. More precisely, the probability of obtaining
an m-dimensional Gaussian random vector with norm r reads

P(|lell = 7) ocr™teTa (2.61)

where the factor 7™~ ! comes from the surface area of a hypersphere with radius r. This
distribution has a maximum at v/m — lo (see Fig. 2.27). As o increases, the distribution
gets wider but shifted to the right, so most of the perturbing noise in PDS gets larger.
Therefore, PDS is systematically averaging over a broader but worse set of solutions and
the overall average is bad.

In order to sample over a broad set of solutions while still favoring good ones, we
draw the perturbing noise in two stages. First, we draw a normalized random vector
€. Then, we draw the norm value r from an exponential distribution with mean « and
use it to rescale the noise vector as € := ré. This leads to more solutions with good fits
than bad ones as shown in Fig. 2.28. The mean « is a parameter of the method to be
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2.9. Perturbed data sampling
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The probability of obtaining a 64-dimensional Gaussian noise vector with
norm 7 for different values of o. Increasing o leads to broadening the
distribution and shifting it to the right. This means that by increasing o,
PDS averages over a larger but predominantly worse set of solutions.
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Histogram of the fits of solutions averaged by PDS using perturbing noise
whose norm is drawn from an exponential r ~ Exp(«a). Increasing « leads
to broadening the distribution which means averaging over a larger set of
solutions. This way of perturbing the data always produces more good
solutions than bad ones and thus provides a better average than the per-
turbation with Gaussian noise of fixed o.
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determined heuristically. Larger « leads to a broader set of averaged solutions and a
smoother average.”

It is worth noting that perturbed data sampling works because of the non-negativity
constraints. Suppose that we replace NNLS by just LS. Due to the linearly of the
problem, the average model would be the least squares solution of the average of the
perturbed data. Since the perturbation has zero mean, this is simply the unperturbed
data, and the PDS solution without constraints reduces to the trivial least squares
solution as following

0

/de P(e) fis (g +¢€) = /de Ple) [K'g+K'e] = [KTg] + K' [ dePle) e =fig,

where LS solutions are expressed in terms of the pseudoinverse K* (see Eq. 2.23). On
the contrary, non-negativity constraints introduce non-linearity into the problem and the
NNLS solution of averaged data is not the same as the average of its NNLS solutions.

2.9.1. The algorithm

Here is a pseudocode of the PDS algorithm which is basically a repeated non-negative
least squares:

1: function PDS(K, g, &, Nsamples)

2: foum < 0

3: for 1 S 7 S Nsamples do
4: t~ ./\/(0, I)

5: €« t/[t

6: T~ EXp(Oé)

7 €< T€

8: g+ gte

9: '+ NNLS(K,g)
10: fsum < fsum + 1

11: end for

12: return o, /Neamples

13: end function

The number of samples needed to get a good average depends on the test case and
the resolution of the grid n. Usually 1000 to 10000 samples are enough to get a decent
average and can be increased to smooth out undesired statistical errors. The more
important parameter is a which may be determined using the discrepancy principle
as in Tikhonov regularization (see Sec. 2.6). The computational cost of the algorithm
depends on the cost of NNLS. In practice, we found that the deciding factor is the size
of data m. Therefore, when m is really large, it may worth first computing the SVD of
the full matrix K = USVT and projecting both the data and the matrix on the space
spanned by the first r right singular vectors U, where r is the rank of the matrix. This

"We used an exponential distribution instead of a Gaussian one for drawing the norm r because the
earlier is less concentrated than the later and gives better results.
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Figure 2.29.: Perturbed data sampling solution of test case 1. The parameter a@ = 5e—2
is determined using the discrepancy principle. The number of samples is
10000 and the running time is 18 seconds.

removes the part of the data lying in the null space of K and reduces the size of the
data to r, which is typically much lower than m.

2.9.2. Results

In Fig. 2.29 and Fig. 2.30, we show PDS solutions of test cases 1 and 2, respectively. For
test case 1, the outer peaks are oversmoothed but their shape and decay are clearly better
than NNT solution (see Fig. 2.22). For test case 2, the position and width of the left peak
are estimated accurately but the right peak is undersmoothed. More importantly, while
the peaks in the exact model are Gaussian, the ones in PDS solution have a Lorentzian
shape. This suggests that PDS is better at reconstructing Lorentzian peaks which is
further confirmed in Fig. 2.31. In this plot, we replace the Gaussian peaks of the exact
model by Lorentzian ones and apply the PDS method. Except for the slight broadening
of the left peak, PDS is able to reconstruct the two Lorentzian peaks to a surprising
accuracy.

A main drawback of this method is its behavior at the grid boundaries. For example,
notice the two large values located exactly on the first and last grid points in Fig. 2.29.
They represent the weight that leaks outside the grid boundaries. We can understand
this behavior intuitively as following. Perturbing the data will move the corresponding
structure in NNLS solution around. However, when this structure gets outside the
grid, NNLS, due to its overfitting nature, will put the weight of this structure on the
closest possible point which is the boundary. In the previous test cases, this effect is
easily recognizable and can be safely ignored. Nevertheless, it can be a big problem for
analytic continuation of optical conductivity whose grid start at zero. Then it becomes
hard to distinguish the boundary effect from the real structure near zero.
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Figure 2.30.: Perturbed data sampling solution of test case 2. The parameter a = 15e—3
is determined by the discrepancy principle. The number of smaples is 10000
and the running time is 14 seconds.
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Figure 2.31.: The Gaussian peaks of test case 2 are replaced by Lorentzian peaks; both
have half-width 0.05 and weight 0.5. Comparing with Fig. 2.30 shows that
PDS is better at retrieving Lorentzian peaks than Gaussian peaks.
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In this chapter, we apply Bayesian inference to the analytic continuation problem and for-
mulate the stochastic sampling method (StochS) and other methods in Bayesian terms,
clarifying the assumptions employed by each method. We present a new efficient algo-
rithm for performing StochS called: blocked modes sampling (BMS). In comparison to
earlier sampling algorithms, BMS reduces the computational times by orders of magni-
tude. We then find that StochS results depend on the discretization grid, an effect which
has not been discussed before in the literature. We provide the theoretical explanation
for the effect, show that StochS has a default model implicitly determined by the grid
and give a recipe for choosing a reliable StochS grid.

To make the method more robust, we extend StochS into a gridless method (gStochS)
by sampling the grid points from a default model instead of keeping them fixed. The
effect of the default model is much reduced in gStochS compared to StochS and depends
mainly on its width rather than its shape. The proper width can then be chosen using
a simple recipe like we did in StochS.

Finally, to avoid having to fix the width of the default model, we go one step further
and extend gStochS to sample over a class of default models with different widths. This
extended method (eStochS) is then able to automatically relocate the grid points and
concentrate them in the important region. Results show that eStochS can give good
results and resolves sharp features in the spectrum without the need for fine tuning a
default model.

3.1. Introduction to Bayesian inference

Bayesian inference is a statistical method based on Bayes’ rule which is used to update
the beliefs about a hypothesis in the light of new evidence. Bayesian inference has several
advantages. It can be derived from a set of minimal rules for consistent reasoning known
as Cox’s Axioms (see Ref. [26]). As a statistical method, it does not only allow the
estimation of a solution, but also of the uncertainty in that estimate. Additionally, it
allows using prior knowledge in the inference about the current situation. As we will
see, different methods mainly differ by their prior assumptions which, naturally, affect
the results.

Let H be some hypothesis and E some observed evidence, using the definition of
conditional probabilities P(H|FE) and P(E|H), the joint probability of both H and FE
reads

P(HNE) = P(H|E)P(E) = P(E|H)P(H) . (3.1)
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Rearranging the terms gives us readily the Bayes’ rule for computing the posterior
probability of the hypothesis H given the evidence E

P(E|H)P(H)

P(HIE) = =25

(3.2)

where P(H) is the prior probability of the hypothesis independent of the evidence,
P(E|H) is the probability of the evidence given that the hypothesis is true (known
as the likelihood) and P(FE) is the overall probability of the evidence (known as the
marginal likelihood).

Assuming a set of disjoint and complete hypotheses H;, the sum of their probabilities
add up to one. This holds true not only a priori, but also after observing the evidence

ZP(Hz) =1, (3.3)
S P(H|E)=1. (3.4)

Substituting the Bayes’ rule (Eq. 3.2) in the above relation, the marginal likelihood of
the evidence reads
P(E) =Y P(E|H;)P(H,), (3.5)

which can be seen as a normalization of P(H|E) in Eq. 3.2.

3.2. Bayesian analytic continuation
Let us apply Bayes’ rule to the analytic continuation problem
g = Kf . (3.6)

The hypothesis is that some vector f represents the exact model over some grid intervals,
and the evidence is observing the noisy data vector g:

P(glf)P(f)

P(flg) = Pla)

(3.7)

The left hand side gives us the posterior probability distribution P(f|g): the probability
of f being the true model given the data g. Next we explain the terms on the right
hand side of the previous relation, then we discuss how to use the posterior probability
in estimating the exact model.

3.2.1. Likelihood

The likelihood, P(g|f), is the probability of measuring the data vector g given that f is
the exact model. If the model is f, then the exact data is g = K f, and the likelihood

84



3.2. Bayesian analytic continuation

would ideally be a delta function at the actual data P(g|f) = d(g — g*) = (g — Kf).
However, in reality, the measured data g differs from the exact one g* due to noise
and computational errors. Since QMC results are averages of many data samples, it
follows from the central limit theorem that the noise is distributed as a Gaussian. Let
the covariance matrix of this Gaussian be Cov, which can be estimated from multiple
independent data samples. Then the measured data is distributed as a Gaussian around
the exact one!

Plgle) ocexp |5 87 Cov (g — )| 58)

By integrating over hypothetical exact data, we calculate the likelihood of a model
given the measured data

P(glf) = /dg* P(glg®) P(g"|f) = P(glg” = Kf) oc exp (—%xg) , (3.9)

where x2 = (g — K )" Cov™! (g — K f) is the usual fit of a model f to the data g.

This is a Gaussian function of the data with mean g and covaraince matrix Cov. Due
to the linearity of the relation between the model and data, the likelihood can also be
seen as a Gaussian in the model space whose mean is the least squares solution K'g
(see Eq. 2.22) and whose covariance matrix is the inverse of K*Cov ™ 'K. This is done
by separating the data into two parts g = KK'g + g, where K' is the pseudoinverse
of the matrix K (see Eq. 2.23) and g is the projection of the data on the null space of
K. Then by completing the squares of the fit as a function of f, we can write it in the
following suggestive form

() = (K'g — ) KTCov 'K (K'g — f) + const. (3.10)

The matrix KTCov 'K is most likely to be rank-deficient because the kernel matrix K
is. Consequently, the variance of this Gaussian would be infinite in the null space of K,
which can be seen as a uniform distribution on the free modes of K.

Remember, as explained in the previous chapter, that by taking the Cholesky decom-
position of the inverse covariance matrix Cov ™!, the fit can be written in terms of a
modified data vector and a modified kernel matrix such that the data values are inde-
pendent and have unit variance (see Eq. 2.11). Therefore, we will always assume that
the covariance matrix is the identity to simplify later manipulations.

3.2.2. Prior probability

The prior probability, P(f), represents our prior knowledge and assumptions about the
exact model which can be heuristic or exact. An example of heuristic information is

!Pay attention not to confuse this with the seemingly-equivalent but completely different assumption
that the exact data is distributed as a Gaussian around the measured one i.e. P(g*|g) is a Gaussian.
Such an assumption has no justification whatsoever and leads to wrong conclusions because it neglects
the prior distribution of the exact model and thus that of the exact data.
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expecting the model to be smooth. Using the Ls-norm as a measure of smoothness,
we can express this by assigning higher prior probabilities to models with lower norms.
This leads naturally to the prior used by the Tikhonov method

1
Praa®) cexp |52l (3.11)

which is a Gaussian centered around zero and parameterized by its variance 1/a?.
More generally, the Tikhonov method can use other bilinear functions of the model
(see Sec. 2.6) and still have a Gaussian prior.

Another heuristic is the resemblance to another model m called the default model. The
resemblance between two non-normalized positive models is measured by their relative

entropy

The maximum entropy method (MaxEnt) uses an exponential decaying function of the
model’s entropy as a prior

Putaxent () o< exp [aS(f)] (3.13)

where the parameter a controls the strength of the prior. Notice how the entropy
implicitly enforces the positivity of the model due to the presence of the logarithm
function, which is undefined for negative values. Also, the entropy cannot be expressed
as a bilinear function of the model, so MaxEnt cannot be reduced to a Tikhonov method.

Exact prior information includes the non-negativity of the model and the sum rules
it may satisfy. These linear constraints restrict the admissible models to a convex set
F, i.e. every linear combination of admissible models whose coefficients are positive and
add up to one, is also an admissible model. In the absence of any other information,
the simplest and most intuitive prior is to assign the same probability to all admissible
models and zero probability to models outside the allowed region. For example, the
prior used by the non-negative least squares method (NNLS) reads

lforf >0

) (3.14)
0 otherwise

PNNLs(f) X {

3.2.3. Marginal likelihood

The marginal likelihood, P(g), is the probability of observing the data regardless of what
the actual model is. Using Eq. 3.5, it can be computed as the integral of the likelihood
over all possible models weighted by their prior probabilities

P(g) = / df P(£)P(g|f) . (3.15)

Since it is independent of the model, it is just a normalization constant that will not
affect the estimation of f, and thus we need not care about it.
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3.2.4. Estimator

After fixing the prior and the likelihood, we get a posterior probability P(f|g) (up to a
normalization constant) for each model f. Now we want to choose from all the infinitely-
many possible models just one model f* as our estimate. But which one?

Bayesian decision theory answers this question by asking another one: what is the
cost of being wrong? Given the cost (called Loss function), it makes sense to choose the
model with the minimum expected cost.

Formally, let the loss function L(f’, f), represent the price we pay when using f’" as an
estimate when f is really the exact model. The best estimation f* is then the one that
minimizes the expected value of the loss function:

f* = arg min/df’ P(f'|g) L(f', 1) (3.16)
£

A commonly-used loss function is the 0-1 loss function when f has discrete values

L f) = {

or the functional Dirac when it has continuous values
L(f' f)=1-46(f —f), (3.18)

which both lead to the maximum of the posterior probability as an estimator

0 when f' =f

; (3.17)
1 when f' # f

= argmin/df’P(f’|g) — P(f|g) = argmin [1 — P(f|g)] (3.19)
£ £
= f* = argmax P(f|g) . (3.20)
£

Another reasonable loss function is the Lo-norm squared of the difference between a
candidate model and the exact one

L(f.£) = |[f' - ], (3.21)

which leads to the mean of the posterior probability as an estimator

£ argmin/df’ P(F|g) ||f — £|2 = /df’ P(F]g) 2(f — ) = 0 (3.22)
f

= f* = /df f P(f|g). (3.23)

The maximum estimator is used by many regularization methods including: Tikhonov,
MaxEnt, and NNLS which are consequently formulated as optimization problems with
different objective functions:

frio, = argmin  x*(f) + o?||f]]? (3.24)
f
1
fMlaxEnt = arg max —3 Y2 (f) + a S(f) (3.25)
f
funLs = argmin — x2(f) (3.26)
£>0
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The use of the maximum in MaxEnt is justified by the argument that the maximum is
a good representative of the resulting posterior which is unimodal (i.e. it has only one
local maximum) and concentrated around this maximum. Note that for the Tikhnonv
method, the use of the maximum would give the same result as the mean because the
posterior is a Gaussian.

However, the maximum estimator does not seem to work very well for non-negative
least squares. The results of this method are generally models with very sharp peaks
over-fitting the data (see Fig. 2.16 and Fig. 2.18). This failure of NNLS may be attributed
at first to the "non-informative” flat prior. But a closer examination shows that it is also
the result of a poor choice of the estimator. Since the prior is flat over all non-negative
models and the likelihood is a Gaussian, the posterior is a Gaussian truncated to the
non-negative region (Fig. 2.15 shows the contours of such a posterior) and its maximum
usually lies on the boundary of this region. Clearly, such an estimate does not reflect
the posterior distribution well enough. Using the mean, on the other hand, would take
into account every possible model weighted by its posterior probability. In other words,
NNLS does not utilize the information about the noise that is encoded in the Gaussian
likelihood. As we will see in the next section, stochastic sampling uses this information
and gets a huge improvement in the quality of the estimation.

3.3. Stochastic sampling (StochS)

Replacing the maximum estimator of NNLS with the mean estimator gives us the
stochastic sampling method (StochS)

1 1
fstocns = 5/ df £ exp {—§X2(f)} ; (3.27)
‘F

where C' is a normalization constant. Intuitively, this method averages over all allowed
models weighted by how well they fit the data. The weight factor is a Gaussian given by
the noise on the data. We expect that this averaging will lead to smoothing the details
not supported by the data. The larger the noise, the larger the smoothing. Note that
the average is guaranteed to be an allowed model because the set of allowed models F
is convex.

From a Bayesian point of view, StochS has a flat prior over non-negative models and a
Gaussian likelihood just like NNLS, but it has a mean estimator. Computing this mean
is discussed in the next section, but first let us consider the following test case and see
how StochS performs in comparison to NNLS.

Test case 3 This test case is taken from Ref. [2]. It is about the analytic continuation
of the optical conductivity o(w) using the current-current correlation function I1(v)

M) = 2 /O e = o). (3.28)

T V2 4+ w?
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Figure 3.1.: StochS solution vs. NNLS solution for test case 3. Both methods use the
same prior (flat over non-negative models) and likelihood (Gaussian) but
different estimators. Using the mean estimator in StochS leads to huge
improvement in the results in comparison to the maximum in NNLS. The
exact model is shown in dashed black.

Ref. [2] uses the following optical conductivity model for its tests

1
Wy W, W } (3.29)

7lw) = { T+ @M 1+ [w—/TP | 1+ [+ /Tl T+ @[T

with two different sets of parameters. Here we use one of them: I'y = 0.6,y = 1.2, T3 =
4,e = 3,W; = 0.3,Wy = 0.2. The data values II(r;) are computed analytically for the
60 smallest Matsubara frequencies v; = j 277" where temperature is set to 7" = 1/15.
Relative normally-distributed noise with standard deviation 1073 is then added to the
data and the model o(w) is reconstructed using the noisy data. One thing that is not
discussed in Ref. [2] is how the data integrals are discretized. As a starting point, we
take a uniform grid of w in the range [0, 8] with 32 points and use the rectangle rule. The
discretization and cutoff errors using this grid are below the noise level (check Sec. 2.1
for a comment on the convergence of the rectangle rule). In Fig. 3.1, we show the results
using the NNLS and StochS methods. As expected the NNLS solution is composed of a
few sharp peaks roughly located where the bulk of the model is. In contrast, the StochS
solution is a smooth function resolving the main features of the exact model. Notice
that the StochS prior makes no assumptions about the smoothness of the model and the
resulting smoothness comes from averaging only. For example, Fig. 3.2 shows some of
the high-probability models in StochS. These models fit the data well enough but lack
any smoothness, and therefore StochS has the potential of resolving sharp features when
they are supported by the data.

Note on Error Bars: The error bars shown in stochastic sampling plots represent the
statistical error in computing the average. They are estimated from independent runs
of the sampling algorithm as the standard deviation of the average. This should not
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Figure 3.2.: Three different models that have high posterior probability in StochS. Since
the prior is flat, these models also have a high likelihood and thus they fit
the data well. StochS smooth solution is mainly the average of such sharp
models.

be confused with the standard deviation of the posterior probability distribution. The
earlier goes down to zero as the number of samples increases, while the latter is an
intrinsic property of the distribution and not related to the averaging itself.

3.3.1. Sampling algorithm

Computing the StochS solution requires evaluating a multidimensional integral. Had we
not had any constraints, the set of allowed models would have been the entire space.
In this case, the posterior distribution of the stochastic sampling would be improper
because the kernel matrix K is rank-deficient which leads to an infinite normalization
factor. The problem comes from the null space of the matrix K, in which the Gaussian
becomes uniform (i.e. infinite variance), and thus it is unnormalizable in that infinite
subspace. Nevertheless, if we exclude the null space, the posterior is a normalizable
Gaussian centered around K'g (see Eq. 3.10) and the stochastic sampling solution can
be well-defined. Since the mean of a Gaussian matches its maximum, the StochS solution
in the absence of the non-negativity constraints equals the least squares ones.

The non-negativity constraints that make computing the mean more laborious, im-
prove the quality of estimation considerably. Due to truncation to the allowed region F,
the desired mean is not K'g anymore, but has to be computed numerically by sampling
the models using, e.g., the Monte Carlo method and then averaging the samples.

Refs. [4, 27, 3] use the Metropolis algorithm for the sampling. It starts from an initial
admissible model and suggests constraint-satisfying random changes on its components
to obtain a candidate sample. If the candidate sample has a higher probability than
the old one, it is accepted directly; otherwise it is accepted according to the ratio of
the probability of the candidate sample to the probability of the old sample. When a
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candidate is rejected, the old sample is kept. This is repeated until a sufficient number
of samples is generated. Refs. [4, 27, 3] do not report quantitative information about the
running time of this method. However, they describe the generated samples as highly-
correlated. Actually, the correlation time is so high that they use simulated annealing
procedures to sample efficiently and avoid being stuck around a specific model of high
probability.

We propose a new sampling algorithm, blocked modes sampling (BMS), that has small
correlation time and can cover the admissible space of models without the need of sim-
ulated annealing. BMS takes advantage of two properties of the truncated multivariate
Gaussian distribution. First, its conditional distributions are truncated univariate Gaus-
sians, for which fast sampling algorithm exists. Second, any linear transformation of the
variables is itself distributed as a truncated multivariate Gaussian. The first property
allows us to compute conditional probabilities and use Gibbs sampling, a special case
of the Metropolis-Hastings algorithm to be explained below, which has an acceptance
probability of one. The second property allows us to do variable transformations such
that the steps taken by the sampling are large. Taking large steps with an acceptance
ratio of one makes for an efficient Monte Carlo sampling!

In the following, we explain BMS by developing it gradually. We start from sampling
the model’s components directly, which is easy to implement but does not account for
the correlation between the components. Then, using modes sampling, we go to the
other extreme, where correlations are fully accounted for. However, the inequality con-
straints couple those modes together reducing the overall efficiency. Finally, we describe
blocked modes sampling as a solution balancing the correlation of the components and
the coupling of the modes, leading to a much higher efficiency.

Note To keep things simple, we will assume in the following discussion that we only
have non-negativity constraints. Imposing sum rules will be explained in Sec.3.3.1.

Components sampling

Gibbs sampling is useful for sampling a joint probability distribution p(f) when its
conditional distributions are known and easy to sample. It starts from some initial
sample (O, Then a new sample £¢*1) is generated from the current one f) by sampling
each component conditional on the values of all other components. It is easy to see that
Gibbs sampling is a special case of Metropolis-Hasting algorithm. In Metropolis-Hasting,
if we have a sample f®) we propose a new sample f’ with probability ¢(f®) — f’) and
accept it with probability

p(f) q(f" — £)

P(FD) g(fD = 1) (3.30)

r =min |1,

In Gibbs sampling, the current and proposed samples differ in the value of component
fi; which is updated according to its conditional probability. Therefore, the proposal
probability ¢(f) — ') equals p(f! \f((i)z.)), where (—1) in the subscript of a vector indicates
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that component 7 is removed. The acceptance probability then reads

p(E) q(f — £0)  p(flIEY,) <f<“ ) UIE)
p(f®) q(fO — ) N p<f(t)’f((t))) p( ) (f’]ft) ) o

(2

(3.31)

Therefore, each proposed step in Gibbs sampling is accepted.

To apply Gibbs sampling to our case, we need to find the conditional distributions
p(filf—i). We rewrite the exponent x* from Eq. (3.10) as a function of f; alone, while
considering f_;) as parameters

Clfifey) = (g -K) (g-Kf) (3:32)
B ) A R
= (- Kifi ~ Ko fog) (8~ Kifi — Ky £0) (3.34)

where K is the i-th column of K, and K _;) is K with the i-th column dropped. Denoting
g = g — K- f_;, which is the data vector after subtracting the contribution of
the conditioned variables, we have

XQ(fz‘;f(—i)) :( g(—i) — ifi)T( —i) — ifi)
=K/'Kif? —2g  Kifi + 81 g (3.36)
- TK. TK.
— (: g((I_é)TII{{l)/_IfZ Kz) + const. (3.37)

where the last relation comes from completing the square. From this relation, we see that
in the absence of constraints, the conditional p(f;|f_;)) is a univariate Gaussian with
mean p = Kjg;)/K{K; and variance ¢* = (K}K;)™'. Non-negativity constraints
truncate this Gausswun to the interval [0, col.

Let us put things together. We start from some initial non-negative model. We pick
one component of the model and update its value while keeping the values of all other
components fixed. The update is done according to a Gaussain distribution truncated
to the positive region. The parameters of this distribution are computed by subtracting
the contribution of the conditional components from the data and considering the kernel
matrix column corresponding to the updated component. The mean is the projection
of the residual data on the column matrix, and the variance is the squared inverse
of the column matrix norm. Sampling a truncated univariate Gaussian can be done
efficiently using, e.g., the algorithm provided by Ref. [28]. After drawing the value of
this component, we have our first sample. Then we pick another component and update
its value in the same way to get another sample and so on.

Picking components for updating can be done randomly according to whatever dis-
tribution we wish as long as all components have non-zero probabilities; otherwise the
sampling would not cover the whole space. Whatever the picking distribution is, the
sampling is still ergodic, because such a probability can be considered as part of the
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Figure 3.3.: Components sampling for the two dimensional case. The ellipses represent
the contours of the sampled bivariate Guassian distribution. The arrows
represent steps taken by component sampling. Notice that when the ma-
trix K is diagonal, component sampling goes directly to the region of high
probability. On the other hand, when the matrix in non-diagonal, sampling
is less efficient.

proposal probability ¢(f) — f’). The simplest choice is a uniform distribution. An-
other option is to go through all the components one after another, and a new sample is
considered after updating all the components. The latter way of sampling can no longer
be considered as a special case of Metropolis-Hasting algorithm, but it can still be shown
to satisfy the detailed balance condition [29]; actually the latter way of the sampling is
what is typically referred to as Gibbs sampling.

The convergence of Gibbs sampling is proved in Ref. [30] under mild conditions. One
condition that deserves our attention is the lower semi-continuity of the sampled dis-
tribution at zero. This means that models on the boundary of the admissible region
should be assigned zero probability and only strictly positive models are admissible (i.e.
the constraints should be f > 0 rather than f > 0). The exclusion of the boundary,
however, does not affect the calculation of the stochastic sampling solution because the
boundary has zero measure in the integral of Eq. (3.27).

Regarding computational complexity, computing g(_;) = g—K(_; f_;) takes O(mxn)
operations, and computing p and o takes O(m) operations. Since sampling a truncated
univariate Gaussian is independent of the problem size and typically m < n, the to-
tal cost of sampling one component using Gibbs sampling is O(n). Going through all
components takes O(n?).

The efficiency of components sampling depends on the correlation between the differ-
ent components which is determined by the matrix K. A diagonal matrix implies no cor-
relation and Gibbs sampling becomes equivalent to direct sampling. On the other hand,
large non-diagonal elements make Gibbs sampling extremely inefficient (see Fig. 3.3).
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Modes sampling

As we saw in the last section, components sampling is efficient when the matrix K is
diagonal because it implies no correlation between the components. But what do we do
when there are correlations? We go to a basis where there isn’t such a correlation! This
is done by rewriting the fit ¥ in terms of the singular value decomposition of the matrix
K = USV?T

X¥=@g-Kf) (g-Kf) (3.38)
— (g—USVTf)' (g—USVT¥) (3.39)
— (UTg—SVT )" (UTg—sVT 1) (3.40)

where UTU = T is used (see Sec. 2.2). Denoting the projection of the model on the
modes as e := VTf and the projection of the modified data on the left singular vectors
as h := U'lg, we have

x(e) = (h — Se)T(h — Se) . (3.41)

Since the projection coefficients e are related to the model f by a an orthogonal trans-
formation, then df = de. As a result, we can directly change the integration variable in
Eq. (3.27) from f to e, and StochS solution reads

1 1 Vv 1
f, =_— [ deVe exp|—=x*(e)| = = [ dee exp |—=X%(e)]| , 3.42
StochS C’/f P{ QX()} C/f p[ 2X()} ( )
where the last equality holds due to the linearity of integration. The advantage of this
transformation is that the multidimensional exponential is now factorized into r one-
dimensional exponentials, where r is the number of non-zero singular values. This can
be made clearer by rewriting the exponent as

’(e) = Z(h’z — 5,65)% = Z s2(hi/s; — €)? + Z h? . (3.43)
i=1 i=1 i=r

~——
Residual

Then Eq. (3.42) reads
=] ooy

-2 -2
EN 2s;

\%
fStOChS = —,,/ del den exp |:_ :| e, (344)
CJr

where exp(—0.5 x Residual) is absorbed in the normalization constant C'. This equation
(Eq. 3.44) and the original one (Eq. 3.27) express the same multidimensional integral in
two different bases (see Fig. 3.4), which are related by the orthonormal matrix V, whose
columns v; represent the modes.

Apart from truncation to the allowed region F, it is obvious that the first » projection
coefficients e; are distributed as independent Gaussians, each of which has mean h;/s;
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Figure 3.4.: 2D Illustration of the difference between components sampling and modes
sampling. The ellipses represent the contours of the probability distribution
in the space of models. Eq. (3.27) expresses this distribution in terms of
f1, fo while Eq. (3.44) expresses it in terms of ej,es. The shaded region
represents the region of models’ space that should be sampled. Although
this region is the same for both cases, it is more complicated to express in
terms of ey, eo, while it is simply half open intervals in terms of fi, fs.

and variance s; 2. Restriction to the region F leads to a truncation to an interval |a;, b;[
(It is guaranteed to be one connected interval because the region F is convex). The
truncation limits a; and b; of one coefficient depend on the values of all other coefficients.
To determine these limits, let e; be the current value of the coefficient and e} be the new
one, then the new components of the model should satisfy the non-negativity constraints

f'>0=f+ (6; — 61‘) V,>0=Vk e {1, ,n} : fz + (6; — 61')‘/;@71' >0= (345&)

_ ) fi/Viit+e k, (3.45Db)
e < —fi/Vii+e + Vii <O

L, J0=max {=fi/Vii+ei: Vig > 0y U {—o0} (3.45¢)
by =min  {—fi/Vii+ e : Vi <0} U {400}

Coefficients corresponding to s; = 0 can be thought of as Gaussians with infinite vari-
ances. Therefore, they are distributed uniformly in the interval ]a;, b;[.

Modes sampling is using Gibbs sampling on the coefficients e; instead of the compo-
nents f;. The advantage of using the former rather than the latter is that the coefficients
e; are uncorrelated. Comparing Fig. 3.3b to Fig. 3.5b, we see that, in contrast to com-
ponents sampling, modes sampling is efficient even when the matrix K is non-diagonal.
The disadvantage, however, is that the constraints are harder to express in terms of ¢;
and they may lead to strong coupling between the modes.
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Figure 3.5.: Modes sampling for the two dimensional case. The ellipses represent the con-
tours of the sampled bivariate Guassian distribution. The arrows represent
steps taken by modes sampling. Notice that unlike components sampling
(Fig. 3.3), modes sampling is efficient regardless of whether the matrix K is
diagonal or not.

Regarding computational complexity, computing the singular value decomposition
takes O(n?), assuming m is of the same order of n or less. But this cost is paid only
once in the initialization phase, and the cost per sample is the important factor. The
cost of updating one mode’s coefficient e;, is dominated by computing the limits ag, by,
which takes O(n) operations. Therefore, the cost of sampling one mode is O(n). Going
through all modes takes O(n?), the same cost as component sampling.

So far so good! Having only the 2-dimensional picture in mind (Fig. 3.5), one may be
led to think that modes sampling is the best way of sampling a truncated multivariate
Gaussian as it gets rid of all the correlation in the matrix K. However, in higher
dimensions, it can also become quite inefficient depending on the shape of the exact
model (see Fig. 3.6). This happens whenever the original model has both comparatively
very large and very small values (Fig. 3.6b). Due to the positivity constraints (Eq. 3.45),
the truncation interval of a coefficient is determined mainly by the lowest values of the
model in the region where the corresponding mode is concentrated. Since most modes
are non-local, their coefficients will be sampled from very small intervals leading to very
small updates on the model and thus high correlation times.

Kernel modification A quick fix to this problem is to modify the model such that the
discrepancy between its values is reduced. Of course, we do not know the exact shape
of the model (otherwise, we would not need analytic continuation in the first place), but
we may be able to guess its overall shape, i.e., where it has large values and where it has
small values. For the model shown in Fig. (3.6b), a half-Lorentzian whose half-width
is roughly 3 would be a good guess for example. Let such a guess be denoted as m(x),

96



3.3. Stochastic sampling (StochS)

0.4 0.3

0.35 0.30
0.30y 0.25

0.25 0.20

o(w)
ofw)

0.20y 0.15

0.15 0.10

0.10y 0.05

00805 10 15 20 25 30 35 40 0.0 7 7 5 8 70 12

w w

(a) Model 1 (b) Model 2

Figure 3.6.: Modes sampling is much more efficient for the original model shown on the
left than for the one shown on the right. This is because the second model
has many values near zero while the first one does not. The two models are
actually the same; the left one is just truncated earlier than the right one.

then f(z)/m(z) would have less discrepancy than f(x) itself. So instead of solving the
original problem with kernel K (x,y)

g@wzjﬁxﬂwfaaw, (3.46)

we solve the equivalent problem using the modified kernel K (x,y)m(x)

o) = [ dx [ L e pmie) (3.47

The result of stochastic sampling using the modified kernel will be f(z)/m(z) instead
of f(z) which can be fixed by multiplying the result with the modification m(z) after-
wards. The two problems are completely equivalent as long as the modification is strictly
positive.

We found that using kernel modification does indeed accelerate the convergence of
modes sampling for the aforementioned cases, and it even makes some calculations pos-
sible that would be practically impossible without the modification. However, such
calculations may still take very long time for pathological cases. More importantly, the
usefulness of the kernel modification depends on our guessing of the shape of the func-
tion we are trying to recover; such information may not be available. Therefore, we
need a better way of sampling that can handle such cases without the need of kernel
modification. It is blocked modes sampling.

Blocked modes sampling (BMS)

Modes sampling works best for models whose values vary little (see Fig. 3.6). Therefore,
when the model has several regions with considerably different values, it makes sense to
block components corresponding to the same region together and apply modes sampling
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Figure 3.7.: Sampling around such a model is inefficient using modes sampling. However,
applying modes sampling separately to the regions before and after x( leads
to very efficient sampling.

to these blocks separately. This is the basic idea of blocked modes sampling. We will
explain next the simple case of two regions.

Suppose we are sampling around the model shown in Fig. 3.7. This model has two
regions; it has large values in the first region and comparatively small values in the
second one. Let f;, fy be the vectors composed of model components corresponding to
the first and second regions, respectively. Similarly let Ky, Ko be the matrices composed
of the corresponding columns of K. In terms of these, we rewrite the fit x? as following

X=(@E-Kf)' (g-Kf) ) (3.48)
e () e ()] oo
— (g — Kufy —Kafy)' (g — Kuify — Kafy) . (3.50)

Similar to components sampling, we can sample f; conditional on fy. Subtracting the
contribution of fy from the data and denoting g; = g — K5 f3, we have

C(f1if) = (g1 — Kafy)' (g1 — Kaufy) . (3.51)

Clearly p(f;|fz) is a Gaussian with kernel matrix K; and data g; and it can be sampled
using modes sampling. The same argument goes for fy conditional on f;. It is also
distributed as a Gaussian with kernel matrix K, and data gy = g — K; f;.

Blocked modes sampling starts from some initial sample f = (fy, f2)T. It then subtracts
the contribution of fy from the data and samples f; using the modes of the matrix Kj.
After sampling all the modes of fy, it switches to fy, subtracts the contribution of the
new f; from the data and samples fy using the modes of the matrix Ky. After sampling
the modes of fy, we have our first sample. This procedure is then repeated to obtain
the desired number of samples. Generalization to an arbitrary number of blocks is
straightforward: Always subtract the contribution of the other blocks from the data and
sample using modes of the matrix corresponding to that block. Notice that components
sampling and modes sampling are just special cases of blocked modes sampling. In
components sampling, each block contains one component, while modes sampling has
one big block containing all the components.
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Figure 3.8.: An example of a hierarchy of partitions used by BMS.

The best partition for the case shown in Fig. 3.7 is two blocks touching around x.
In practice, however, the best partitioning is not known beforehand. First, we probably
do not know the shape of the model itself, so we may have no idea about the regions
of similar values. Second, the transition between regions may not be as sharp as shown
in Fig. 3.7 which makes choosing the boundaries of the regions fuzzy (see Fig. 3.6a).
This is solved by switching between different partitions during the sampling. A system-
atic way of choosing partitions is using a hierarchy of partitions like a binary tree (see
Fig. 3.8). BMS then switches randomly during sampling between the the different levels
(partitions). Intuitively, higher levels of the hierarchy are responsible for global updates
of the model while lower levels are responsible for updating the local details. We also
shifted each other level of partitions by half the block size. This avoids the alignment of
the boundaries of levels which may cause artifacts at these boundaries, requiring a lot
of sampling to average out.

Computational complexity Let b be the length of a block. Modes sampling of that
block takes O(b?) while computing the contribution of the other blocks to the data takes
O(n—"0). So in total we have O(b*+n) operations per block. Since we have (n/b) blocks,
the total cost is O(n?/b+nb) which equals O(n?) for b between 1 and n . Therefore, the
cost of obtaining one sample is O(n?) regardless of the partition.

For sampling the modes we need to to compute the singular value decomposition of
all blocks. This takes O(b%) operations per block and thus O(nb?) per level (partition).
This is done only once in the initialization phase, and the results are cached and reused
during sampling.

Efficiency In Fig. 3.9 and Fig. 3.10, we compare components sampling, modes sampling
and BMS for the analytic continuation of the models shown in Fig. 3.6a and Fig 3.6b,
respectively. All three methods start from the same initial sample which is chosen, for
the sake of illustration, to have a very low probability.
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Thermalization plots show how fast the sampling moves towards the high probability
region. For model 1 (Fig. 3.9a), modes sampling and BMS thermalize almost instantly
while components sampling takes many more iterations. For model 2 (Fig. 3.10a), the
performance of modes sampling decreases significantly due to the discrepancy of the
values of the model.

Step-size plots show the relative length of the random step taken by sampling at each
iteration. It is defined as the ratio of the norm of the step vector to the norm of the
new sample vector A; =| f& — £~V || /|| £@ ||. Regardless of the model, BMS has
the largest step size while components sampling has relatively small step size. Modes
sampling, on the other hand, takes large steps for model 1 and very tiny steps for model
2. These results confirm that whatever the model is, BMS is the method of choice for
performing the sampling.

Initialization

An ergodic Monte Carlo simulation converges eventually to the desired sampled distri-
bution. However, depending on the starting point, the simulation may follow at the
beginning a different distribution, and a certain number of samples at the beginning
of the simulation (called thermalization period) should be discarded. If we could start
immediately inside the high probability region, then the thermalization period can be
drastically shortened.

In analytic continuation, we are sampling a multivariate distribution truncated to
the non-negative region. The maximum of this distribution is nothing but the non-
negative least squares solution. This solution could be a good starting point, but it has
the disadvantage of lying on the boundary of the non-negative region (i.e. it has many
zeros). Therefore, we use a fast regularization method that respects the constraints
e.g. non-negative Tikhnonv or the perturbed data sampling method (see the previous
chapter). Such an initial model would have a high probability (because it has good fit)
and lies inside the allowed region (because it is regularized).

Imposing sum rules

In the previous sections, we assumed only non-negativity constraints to simplify the
arguments. Now we show how to impose ¢ sum rules. After discretization, the sum rules
become a set of equality constraints written concisely in vector form

Cf=d, (3.52)

where the matrix C € R?*". Using a QR decomposition or singular value decomposition,
we can find a complete basis Q = [Qconst Qfice] € R™*"™ where Qconst € R™*7 is a basis
spanning the row space of C, while Qgee € R™("9 is a basis spanning the null space
of C. Clearly the projection coefficients of the model on the row space are determined
by the constraints, while the rest are free. The above equation then reads

C Qconst Q;Fonst f=d (353)
C’ f,

100



3.3. Stochastic sampling (StochS)

1000
— Component Sampling
— Mode Sampling
8000 .
— Blocked Mode Sampling
__ 6000
S
g
" 4000
800 850 900 950 1000
2000
00 200 400 600 800 1000
iteration ¢

(a) Thermalization Plot: —log(P;) o< x2(f®) =|| K £ — g ||2

Component Sampling
Mode Sampling
Blocked Mode Sampling

0.8

0.6

<

T

~ shabtrth vt Al Lot Py N

200 400
iteration ¢

f |
\MI“ “( {h | ”4
i

0g

(b) Step-Size Plot: A; =|| £ — £0=1 || /|| £ |

Figure 3.9.: Comparison of the efficiency of different sampling algorithms for the an-
alytic continuation of the model shown in Fig. 3.6a (a model with small
discrepancy in its values). In the thermalization plot, we notice that modes
sampling and BMS thermalize almost instantly while components sampling
takes many more iterations. In the step-size plot, we notice that BMS and
modes sampling take large steps while components sampling has a relatively
small step size.
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Figure 3.10.: Comparison of the efficiency of different sampling algorithms for the an-
alytic continuation of the model shown in Fig. 3.6b (a model with large
discrepancy in its values). Notice that BMS has the best thermalization
and takes the largest steps. Comparing with Fig. 3.9, we notice that the
performance of components sampling is similar because this sampling is not
affected by the shape of the model. On the other hand, modes sampling
thermalizes much more slowly and its steps become very small because the

model has both small and large values.
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We can now split the model using the new basis Q into constrained and free parts

f= Qconstfconst + ereeffree . (354)

The averaging is then done only on the free part

1 1
fStochS - Qconstfconst + 6 / dffree ffree exp (_§X2> (355)

ereeffree+Qconst feonst >0

and the fit x? can be written in terms of f... as

X =(@E-Kf) (g-Kf) (3.56)
= (g-K QQ™)' (- K QQ™f) (3.57)
= |2 — (KQuonst KQirec) (ffftﬂ T [g — (KQoonst  KQprce) (ffft)l (3.58)
= (8tree — Ktreefiree)  (8tice — Kireoftree) - (3.59)

where Koo = KQfgee is the projection of modified kernel on the null space, and ggee ==
g2—KQconst feonst is the modified data after subtracting the contribution of the constrained
part of the model. The last equation (3.59) shows that . is distributed as a multivariate
Gaussian with matrix Kge. and data gge., and it can be sampled using either modes
sampling or more generally BMS.

Applying modes sampling to fi.. is straightforward. Instead of using the modes of K,
we use the modes of Kye.. The main modification needed is computing the truncation
limits in Eq. (3.45), where instead of using the positivity constraints, we use the condition
ereeffree > _Qconst fconst-

Generalizing to BMS is also easy. For example, if we have two blocks fy, f2, we split
Eq. (3.52) accordingly

le]_ + C2f2 - d 5 (360)

where Cq, Cq are the parts of the matrix C corresponding to the first and second blocks,
respectively. Then we sample the first block f; using modes sampling with constraints
matrix C; and right hand side d — Cayf;. Similarly, the second block is sampled with
constraints matrix C, and right hand side d — C4f;.

Pay attention that the block size should always be larger than the number of linearly
independent constraints on that block. Otherwise, the null space corresponding to the
blocked constraints matrix is empty and the model values in that block are completely
determined by the constraints and the rest of the model. We detect such blocks in the
initialization and avoid sampling using them. For example, when a normalization con-
straint exists, component sampling cannot be used because we cannot move components
individually without violating the constraint.
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Figure 3.11.: StochS results of test case 3 using a uniform grid with spacing 0.25 and
increasing cutoffs.

3.3.2. Grid dependence

The StochS result shown in Fig. 3.1 was obtained using a uniform grid with 32 points
and cutoff 8. The result differs somehow from the exact model, so one would expect that
by improving the grid, the results should get better because the discretization and cutoff
errors would get smaller. Surprisingly, increasing the cutoff makes the results worse as
shown in Fig. 3.11. As the cutoff increases, spurious peaks develop, and they become
more and more pronounced for larger cutoffs! Moreover, the cutoff dependence cannot
be attributed to the discretization error because we get the same results using numerical
data i.e. data generated using the same grid used in StochS. This suggests that the grid
dependence is an inherent property of the method. In order to study this dependence,
let us first show how to systematically build different grids.

Building a grid An arbitrary grid of a variable x € [a, b], where a is possibly —oco and
b is possibly 400, can be specified by the density of its points p(x) and the total number
of points n which we call the grid size. The grid density function p(x) is a normalized
positive function whose integral over any interval fixes the fraction of grid points in that
interval. Given p(x) and n, the grid points z; and weights Az; can be determined as
following. Define the following variable transformation

P:z—z: / dx’ p(x') . (3.61)

Since p(z) is strictly-positive and normalized, its antiderivative P(x) is monotonic, and
thus defines a one-to-one mapping between z € [a, b and the new variable z € [0, 1] (see
Fig. 3.12). Dividing the interval [0, 1] of z into n sub-intervals of equal width
0, z1], [21, 22, .o [Zn—1,1]  where 2z = L : (3.62)
n
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z=P(x)

Figure 3.12.: Any non-uniform grid can be built using a uniform grid of a transformed
variable. Therefore, this transformation (or its derivative, the grid density)
characterizes the non-uniform grid completely (up to the total number of
points). Remember that z = 0 maps into x = a and that z = 1 maps into
x = b, which may be infinites.

leads to dividing the interval [a, b] of z into n generally non-equal sub-intervals
[a, 1], [x1,22], ... [Tn_1,0] where z; =P (). (3.63)

In principle, we could now use this grid to numerically evaluate any integral of the
variable x, but we would run into trouble when the first or last sub-interval extends to
infinity. We can avoid this problem nicely by rewriting the integral in terms of z and
evaluating it on the uniform grid of z using the mid-point rule

[arow = [0 % oprena S H ey e
xr ¢(x) = z — 2)) ~ — — 2} :
a 0 dz ni= dz|,_. !
here ot — citzm  2A1 (3.65)
where 2z = = : :
! 2 2n
This gives following evaluation points in the x variable
aj = P7H(z));, (3.66)
with the following weights
1d 1
Ax; = — o = : (3.67)
ndz| _. npx)

Using these points and weights instead of the midpoints and lengths of the non-uniform
intervals of x, avoids the problem with infinite intervals.
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Grid examples Obviously taking a constant density in the interval [a,b] leads to a
uniform grid on that interval

dz 1 Tr—a
)= e T P =T =
d
x:P_l(z):a+(b—a)z:>d—j:(b—a). (3.68)

We can get a highly-compressed grid on the interval [0, 00] by using an exponential
density function with scale 3

d 1
plx) = d—Z =P = =Pa)=1-" =
x

g
dx 16
r=P ' 2)=—pln(l —2)=> = = .
(:) = (1 —2) = 5 = -
We can easily reflect this grid about zero to get a grid on the whole real line or we can
use a Gaussian density function with variance o

dz 1 x? 1 x
p(x) Ty exp ( 202) =z (x) 5 [ +er (—U 2)] =

r=Pl2)=V20af!(2:-1)= % = oV21 exp [2 erf (22 — 1)] (3.70)

(3.69)

Another useful density that is also concentrated near zero but less compressed than the
Gaussian grid, is a Lorentzian grid with half-width ~

dz 1 1 T 1
Tr)=— = :>z:Pm:—tan_1(—>+—:>
o) dr 7y [1+ (v/7)?] (@) m Y 2
_ dz 2ym
=P7l(z) = R 71
v (2) = tan <7TZ 2> = dz 1 —cos(2mz) (3.71)

When needed, both the Gaussian and the Lorentzian grids can be easily truncated to
the positive axis.

Grid as a default model In Fig. 3.13, we compare the results of a uniform grid with
a Lorentzian grid and an exponential grid. Again the results are slightly different for
different grids. To see the grid dependence more clearly, we look at the solutions for
large w, where the information provided by the data is weak. Plotting those solutions on
a logarithmic scale, we notice that the solution of the Lorentzian grid has a second-order
decay (Fig. 3.14a) while the solution of the exponential grid has an exponential decay
(Fig. 3.14b). In both cases, the decay of the solution is the same as the decay of the grid
density! Furthermore, if we repeat the calculations using only the first data point I1(0),
which determines the normalization, then the solution on a grid is, up to a normalization
factor, the density function of the grid (see Fig. 3.15). These results show that the grid
density plays the role of a default model! In the next section, we will explain the grid
dependence and show how to modify the flat prior used in StochS to simulate the results
of one grid using another.
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— Lorentzian Grid
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Figure 3.13.: StochS results of test case 3 using three different grids: a uniform grid with
cutoff 8, a Lorentzian grid with half-width v = 2.5 and an exponential grid
with scale g = 3.
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(a) Lorentzian grid results of Fig. 3.13 plotted on a semi-log scale.
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(b) Exponential grid results of Fig. 3.13 plotted on a log-log scale.

Figure 3.14.: The decay of a solution matches the decay of the grid density.
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Figure 3.15.: Results using only information about the normalization. Notice that we
obtain a Lorentzian function on a Lorentzian grid and an exponential func-
tion on an exponential grid. In general, the result is always proportional
to the grid density.

3.3.3. Grid simulation

Although the grid dependence seems perplexing at first glance, we can actually under-
stand it in a straightforward way. Starting from a fine grid, StochS assumes a flat prior
on the components of the fine model. Forming a coarser grid model from the fine one
corresponds to averaging consecutive values, but the average of non-negative uniform
variables is not itself a uniform variable, and therefore the components of the resulting
coarse model are not distributed uniformly. On the contrary, had we started directly
from a coarse grid, StochS would have assumed again a flat prior on the components
of the coarse model which contradicts the non-uniform distribution implied by the fine
grid! This shows that the grid dependence is the result of having different assumptions
on different grids. In order to get the same StochS results using two different grids,
we should assign the same prior to the same quantity. In this section, we show how to
modify the priors such that different grids can have the same assumptions about the
model, and thus give the same results.

To simplify the following discussion, we will work with the model integrals F over
grid intervals instead of the average values f. This does not affect the results of StochS
because a flat prior on f; implies a flat prior on F; and vice versa. The advantage is
that moving from one grid to another would then correspond to summing consecutive
components of the vector F instead of averaging the components of f.

Before we start working on the prior, we need to be able to manipulate the uniform
distributions assumed by StochS in a mathematically proper way. Assuming only non-
negativity constraints, each model component is distributed uniformly over the positive
values. A simple and straightforward trick is to using an exponential distribution

r ~ Exp()\) & p(z) = Ae . (3.72)
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- h R i B iR 6 % : f~Exp(A)=Gamma(l, A

: fy f2 f3 fi ~ Gamma(2, A)
® ® ® ®—

Figure 3.16.: Going from a fine grid to a coarse one. Assuming exponential distributions
on the fine grid leads to gamma distributions on the coarse one.

As the rate parameter \ goes to zero, this distribution approaches a uniform distri-
bution over non-negative values. We can thus replace the uniform distributions with
exponential distributions all having the same rate parameter, manipulate these expo-
nential distributions, and then take the limit at the end.

Let us discuss the simplest possible case, going from a fine grid model F € R to a
k-times coarser grid model F € R"™ (see Fig. 3.16). The components of the fine model
are distributed as

F; ~ Exp()), (using fine grid) . (3.73)

The components of the corresponding coarse model can be be obtained as the sum of
every k consecutive components of the fine model

o
—

<
Il
o

When k = 2, we can easily compute the distribution of the sum as following

p(E) = / dﬁgz /\G_AF%/ dFQH_l )\6_>\ﬁ‘2i+1 5(FQZ + Fgﬂ_l - E) (375)
0 0
Fo _ - LI
= / deZ AG_AF% Ae_)‘(F"’_FQ") = /\2e_>‘Fi/ dFQZ (376)
0 0
= \2F; e Mo (3.77)

For larger values of k, the distribution can be computed similarly

AF 1 aE

This distribution is known as the gamma distribution with shape parameter k& and
rate parameter A\, and it is denoted as Gamma(k,\). In other words, the sum of k
exponential random variables Exp(A) is a gamma random variable Gamma(k, ) (Notice
that the exponential distribution itself is a gamma distribution with shape parameter
k = 1). Hence, applying StochS to the fine model F implies a gamma distribution on
the corresponding coarse components

F; ~ Gamma(k, \), (using fine grid) . (3.79)
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Figure 3.17.: Simulating an exponential grids with 32 points on 128 points grid and
vice versa. The large fluctuations in the left figure are the result of a low
acceptance ratio. It is hard to simulate a coarse grid on a fine one because
of the low acceptance ratio.

If we, however, apply StochS directly to the coarse model F, it will assume an exponential
prior

F; ~ Exp(\), (using coarse grid) . (3.80)
Therefore, we can simulate the results of the fine grid using a coarse grid by multiplying
the probability of a model by the distribution of Eq. (3.79) and dividing it by the
distribution of Eq. (3.80). This modification reads

pﬁne(Fla F27 ceey Fn) o pGamma(k’)\)(Flv F27 ceey Fn)
peoaste(Fy Fy L Fy) pBeN (B By, L Fy)

P'(F) = (3.81)

[T B e ™ e
X T e = IIF (3.82)
=1 i=1

It is independent of A, so it remains valid in the limit A — 0.

For the previous result, we assumed that the number of fine grid points is an integer
multiple k& of the number of coarse grid points. Since the gamma distribution accepts
real shape parameters, it is compelling to extend the result to any real £ > 0. This
means that we can simulate a grid of n; points on a grid of the same type and ns points
by modifying the prior by the factor

P'(F) o [[ F/™t (3.83)
=1

Note that even when ny > ny, the argument is still valid. This is because an exponential
random variable x ~ Exp(\) can be written as the sum of n independent and identically
distributed gamma random variables x; ~ Gamma(1/n, A). Fig. 3.17 shows the results of
simulating grids with different number of points. These results are obtained by replacing
the flat prior with the modified one in StochS average

1 1
FSimulated StochS — 5/ dF P,(F) exp |:_§X2(F):| F. (384)
F
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Figure 3.18.: Going from a uniform grid to a non-uniform one. Assuming exponential
distributions on the uniform grid leads to gamma distributions on the non-
uniform one.

BMS is used to perform StochS with this modified prior. Remember that the original
BMS accepts all updates with probability one (Eq. 3.31). The only change needed is
accepting the updates instead with probability P’'(F). We note that simulating a coarse
grid on a fine one is much less efficient than simulating the other way around because
the acceptance ratio is much smaller than one.

The modified prior can be generalized further to the case of simulating a uniform grid
on a non-uniform one (see Fig. 3.18). A non-uniform grid can be formed from a uniform
one by merging consecutive intervals. When the non-uniform grid has n intervals and
its ¢th interval is the result of merging k; intervals of the uniform gird, following the
same argument as above, the prior probability should be a gamma variable with shape
parameter k;

P'(F) o [ FF . (3.85)
=1

This can be used even when the non-uniform interval is not an integer multiple of the
uniform one. In this case, we can use the ratio of the weights of the non-uniform interval
to the uniform one as the value of parameter k; (see Eq. 3.67)

AfEi n 1

b — - .
AT np(x)] (3.86)

where p(z) is the density of the non-uniform grid and n’ is the size of the uniform one.
Finally using a very fine intermediate uniform grid, we can relate any grid with n,

points and density p;(x) to any other grid with ny points and density po(z). The

probability modification when simulating the second one using the first one is

ny p2(:)
n1 p1(95z‘).

ni
P'(F)o [[F"  where k= (3.87)
=1

Fig. 3.19 shows the results of simulating two grids of different densities.

Sum rules The previous arguments are still valid in the presence of sum rules. Imposing
a sum rule means multiplying the prior by a delta function of the form (> ¢; F;—d) which
is identical for both grids (up to the discretization errors in the sum rule). Therefore,
the two factors cancel out, and we get the same probability modification.
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Figure 3.19.: Simulating an exponential grid using a Lorentzian one and vice versa.

3.3.4. Functional formulation

In the last two sections, we saw that the StochS results depend on the grid and that we
can simulate the results of one grid using another by changing the prior distribution. This
hassle came about because we were hasty in discretizing what is originally a continuous
problem. What we should have done to avoid this, is applying Bayesian inference to
the continuous problem and postponing the discretization to a later stage. This way
the resulting discertized priors would be different for different discretizations, but they
should give matching results because they all come from the same assumptions about
the continuous case, a prior on function space.

Defining priors on function spaces is a complicated subject that requires measure-
theoretic treatment of probability. On such infinite-dimensional spaces, one cannot talk
about probability densities anymore but probability measures also known as stochastic
processes. To keep things simple, one can think of such a prior measure as an integration
measure over the function space. Then StochS becomes an average over functions with
this integration measure weighted by the Gaussian factor of the data

é/Df f(z) exp [—%XQ(J‘)] : (3.88)

Discretizing this infinite-dimensional integration measure of functions using a grid x
gives us a prior over the finite dimensional representations of these functions on that
grid

/Df discretization /dFP(F) (3.89)

In Appendix A, we explain how to build admissible prior processes (integration measures)
for analytic continuation problem and give several examples.

The most important process for us here is the Gamma process GP (A, «, D). This
process has three parameters: (1) a positive real number A > 0, called rate parameter,
(2) a positive real number « > 0, called concentration parameter, and (3) a normalized
positive function D called the default model. This process produces non-negative random
functions with mean

(@) = [Pharsn @) = 1) (3.90)
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and variance )

7(@) = [ Pfcronn) [F@) = nle) = D) (391)

Notice that the mean is proportional to D(z) which justifies calling it a default model.

The variance is inversely proportional to a which justifies calling it the concentration
parameter.

Discretizing this process using a grid whose density function is p(z) and size is n gives

a gamma distribution, the distribution used to simulate one grid of StochS over another

iscretization 1 = D(w.i) -1
/[Df]GP(,\,a,D) = - dFHE” P e (3.92)

grid density: p(z), grid size: n C F>0

Moreover, by setting the default model to the grid density (p = D), setting the concen-
tration parameter to the grid size (n = «) and taking the limit of rate parameter to zero
(A — 0), we get a flat distribution over all non-negative models on the grid

discretization 1
/ [D flap(.n.0) = [ aF (3.93)

grid density: p(z), grid size: n C F>0

This is StochS prior distribution plain and simple! Therefore, we can establish a one-to-
one mapping between StochS grids and gamma processes (with A — 0). StochS can be
formulated as a Bayesian method on a function space with Gamma prior process whose
default model equals the StochS grid density and whose concentration parameter equals
the grid size.

fouas(: D) = & [1Dflarana ow |30 F0). o

This functional reformulation puts things in perspective mathematically. It explains why
the grid density plays the role of the default model. It also shows that the grid size plays
the role of the strength of the prior because it controls its variance: the more grid points,
the stronger the bias towards the default model. Additionally, this formulation defines
precisely the integration measure used by StochS (a gamma process). It shows that the
result obtained by Beach [31], that MaxEnt is an approximation of StochS, is misleading
because that derivation assumes a different integration measure (a multinomial process)
as explained in the appendix.

Using this formulation, the StochS results become grid independent. However, its fi-
nite dimensional priors are not flat anymore. They are grid dependent and parameterized
by a default model and concentration parameter.

3.3.5. Parametric formulation

Although the functional reformulation of StochS explained its grid dependence, it did
not remove it. It just replaced this implicit dependence by an explicit dependence
on the parameters of the gamma process. In the rest of this chapter, we will adopt a
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pragmatic approach to grid dependence and consider StochS to be averaging over models
characterized not only by their integrals F but also the grid points x on which these
integrals are defined. This way, we keep the problem finite dimensional and treat the
grid points as parameters of the method to be selected (Sec. 3.3.6) or averaged over
(Sec. 3.4).

Clearly, the model integrals are not enough to determine the model completely and
some assumptions about its behavior inside the grid intervals are needed. We could
assume a constant value over the interval or a delta function in the middle or any other
non-negative integrable function. For a fine enough grid, however, this choice should not
really affect the result. To stay as general as possible, we encode whatever assumptions
in the object f(z;F,x) which maps a set of gird points x and integrals F into a non-
negative integrable function of the continuous variable z.

In contrast, the model integrals are enough to determine the data (up to an approxima-
tion error) without knowing the details of the model inside the grid intervals. Since the
model is a non-negative integrable function, we can use the First Mean Value Theorem
for Integrals to compute its data integrals as following

o) = [ do K(ap) (@) Z/demwf()
_ZK z?y /lerldxf ZK z7y K]

where each x} is some specific point in the interval [x;, z;41]. Till here no approximation
is made! The approximation comes from not knowing the exact locations of the points
x}, which depend on both the model f(z) and the kernel K(x,y). The approximation
error is proportional to the difference between the maximum and minimum values of the
kernel K (z,y) inside each interval. Since the kernel is a continuous function of z, this
error gets smaller, the smaller the intervals are and the smoother the kernel is. Using
a fine enough grid, the error becomes so small that it is negligible in comparison to the
noise that already exists on the data. The choice of the evaluation points inside the grid
intervals is thus left to the convenience of the sampling algorithm.

StochS can now be defined as an average of the parameterized functions f(z;F, x)
given both the data g and the grid x. The averaging is carried over all model integrals
F weighted by their posterior probabilities

(3.95)

fstoens (7;x) = /dF P(F|g,x) f(z;F,x) . (3.96)

where the posterior probability reads

P(g|F,x) P(Fix)

Pl ) = = g

(3.97)

This is the same as Bayes’ rule of Eq. 3.7 but with probabilities written conditional on
the grid points x. The prior probability is as earlier: flat for all non-negative model
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integrals regardless of the grid points

1ifF >0
P(Fjx) x{ ' _ (3.98)
0 otherwise
The likelihood is still a Gaussian function
1
P(g]F x) ox exp [—gx%F,x)] (3.99)

where the data corresponding to the model f(z; F,x) and its fit x(F,x) can be approxi-
mated as discussed earlier. Finally, the marginal likelihood is the probability of the data
g given grid x irrespective of the model integrals F (i.e. the likelihood marginalized over
the model integrals)

P(g|x) = /dF P(g|F,x)P(F|x) . (3.100)

Since this is independent of the model integrals, it does not affect the averaging. Never-
theless, it is an important quantity in selecting the grid as discussed in the next section.
Putting things together, the StochS solution is given by

1 2
fstons (73 %) = c dF e F92 f(3;F, x) (3.101)
F>0

which shows explicitly the grid points as parameters to be selected.

3.3.6. Grid selection

The Bayesian way of dealing with the grid dependence, as with any other inference
problem, is to put a prior distribution over the grids and get a posterior probability
for each grid. We can then either use the grid with the maximum posterior probability
(maximum estimator)

fstoens (; x*) where x* = arg max P(x|g) (3.102)

or average over different grids weighted by their posterior probability (mean estimator)

/dx P(x|g) fstoens(z;x) . (3.103)

The averaging solution is discussed in the next section and implemented as a gridless
method. The maximum solution would require a non-linear optimization algorithm to
find the ”"optimal” grid with the maximum posterior. Instead, we will use the posterior
probability to derive a heuristic for comparing the quality of grids and use it in a recipe
for selecting StochS grid.

The posterior probability of a grid using Bayes rule reads

glx) P(x)

P(x|g) = il Ple) (3.104)
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and the posterior odds of some gird x; relative to another grid x, are

P(xi1|g) _ P(x1) P(g|x1)
Plxslg) ~ Plx) Plgxa) (3.105)

Assuming no prior knowledge for favoring one grid over the other, we set P(x;)/P(xX2) =
1. The following ratio of marginal likelihoods (see Eq. 3.100), known as Bayes Fac-
tor [32], can then be used to compare grids

5. . Plekx) _ [ dF P(g|F,x,)P(F|x;)
27 P(glxs)  [dF P(g|F,x,)P(F|xy)

(3.106)

where a value larger than one implies that grid x; is more favorable than grid x5, and
vice versa. To simplify the Bayes factor expression, we rewrite the marginal likelihood
as the posterior harmonic mean of the likelihood i.e. the reciprocal of the expectation
value of the reciprocal of the likelihood

/dFP(F|X) =1 (using Eq. 3.4)
= /dF P(g]LT)g]rP(‘],El?X) =1 (using Eq. 3.97)
N P(g|x)/dF % _1

= P(g|x) = Epwjex[l/P(g|F.x)]".

Substituting back in Bayes factor (Eq. 3.106) and using Eq. (3.99), we get

P(glx1) _ Er@mlgxn[l/PEIF X2)] _ Eppigx[e™]
P<g|X2) EP(F|gaX1)[1/P(g’F7X1>] EP(F\g,xl){e—’_X%/Q]

where y; and xs are the data fits using grids x; and xs, respectively. Estimating these
expectation values from StochS samples is possible in theory, but fails in practice [33].
The reason is that StochS produces few samples with large x where eX’/2 is the largest.
Therefore, we need a different criterion of judging the quality of StochS results on dif-
ferent girds.

Instead, we found that P(x), the distribution of the fit of the models sampled by
StochS, to be a reliable heuristic. Lower values of xy mean a better fit to the data, so
the more this distribution is shifted to the left, the more the grid is supported by the
data. For example in Fig. 3.20, we show the fit histograms of a Gaussian grid and a
Lorentzian grid both with width 4 and 128 points. The fits for the Lorentzian grid
are systematically worse than for the Gaussian one, so the data clearly supports the
Gaussian grid in comparison with the Lorentzian one. This agrees with what one would
choose by directly comparing the results with the original model.

In Fig. 3.21, we also show the fit histograms of the above grid densities with increasing
grid size n. As the grid size increases above a certain threshold, the histograms in both
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Figure 3.20.: StochS results for the test case 3 using Lorentzian and Gaussian grids, both
of width parameter v = ¢ = 4 and size n = 128. On the left, we show
the original model (dashed black) vs. the averaged models (colored). On
the right, we show the histograms of the fits of the sampled models. The
samples of the Gaussian gird have substantially lower fits than the ones of
the Lorentzian grid, thus the earlier is favorable by the data.
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Figure 3.21.: StochS results for test case 3 using a Lorentzian grid (top) and a Gaussian
grid (bottom) of width 4 and different sizes (labels). As the grid size
increases, the histograms shift to the right and get broader. Therefore,
lower grid sizes are favorable by the data. Notice also that the histograms
of the Gaussian grid shift much slower than those of the Lorentzian grid.
This weaker dependence on the grid size shows that the Gaussian grid is
less biased than the Lorentzian grid and thus is a better choice.
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Figure 3.22.: Schematic diagram of the mean fit behavior against the grid size. For very
low sizes, the discretization error is dominating leading to a very bad fit.
Once the grid size is large enough such that the discretization error becomes
negligible relative to the noise on the data, increasing the grid size leads to
more bias (worse fit and more smoothing). This dependence on the grid
size starts out slowly and then accelerates till the average model approaches
the default model (grid density) for very large sizes. Therefore, a lower
dependence on the grid size indicates a better grid density, and when the
density matches the exact model, the sweet spot extends to infinity.

cases shift to the right and get broader. According to the above criterion, this means
that the data favors the lowest grid size (as long as the discretization error is negligible).
This makes sense because the grid size acts as the strength of a default model (the
grid density) and thus increasing the grid size biases the results towards the default
model and away from the data (see Sec. 3.3.4). In the limit of n — oo, the result
approaches the default model. Moreover, notice how fit histograms get worse faster for
the Lorentzian grid than for the Gaussian one. Therefore, the dependence of the fit
histogram on the grid size can also be used as another heuristic for selecting the grid
density. Better densities have lower dependence on the grid size and vice versa. This
behavior of the fit against the grid size is summarized in Fig. 3.22 and it is manifested
even more pronouncedly in the following test case.

Caution [t is good to remember that comparing the fit histograms of different grids is
just a heuristic. Since it does not take into account prior probabilities of the grids, one
should be careful not to use it blindly. For example, a grid whose points lie exactly at
the peaks of the NNLS solution would be favorable by this heuristic over any other grid
because it would overfit the data (see Fig. 3.23 and Fig. 3.24). Therefore, this criterion
should only be used to compare "reasonable” girds and guide us only in choosing between
grids that are a priori equally probable.
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Figure 3.23.: NNLS solution of test case 3 obtained on a fine uniform grid from 0 to 8.
We can use this solution to build a grid density for StochS by replacing its
peaks with Lorentzians of fixed half-width (here 0.1), and whose positions
and weights match the positions and weights of the peaks.
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Figure 3.24.: StochS results for test case 3 using NNLS grid density (see Fig. 3.23) and
different grid sizes (labels). Looking at the fit histograms only, this grid
density appears superior over all other grids (compare with Fig. 3.20).
However, comparing the results with the exact model, this grid is com-
pletely unacceptable. This is a reminder that the heuristic of fit histograms
should be used only to compare a priori reasonable grids. Otherwise, it can

lead to overfitting the data.

0.7,

P(x)

8 9

Test case 4 In this test case, we consider the analytic continuation of a fermionic
imaginary-time Green function. The model is simply a Gaussian of width 0.5 centered
at zero. For computing the data, the integrals are discretized on a uniform grid extending
from —20 to 20 with 8000 points. Green function values are generated at 60 equally-
spaced T points in the interval [0, 5] with 5 = 50. No noise is added to the data. In
Fig. 3.25, we show StochS results using a Gaussian grid of width 2. These results have
spurious features similar to the cutoff effect of test case 3, and the strong dependence
of the fit histogram on the grid size indicates that something is wrong with the grid.
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Reducing the width of the Gaussian grid density reduces the dependence on the grid
size till the grid density matches that of the exact model. In this extreme case, the fit
histograms shown in Fig. 3.25f are almost identical for different grid sizes.

Grid recipe Motivated by the previous discussion, we propose the following recipe
for selecting the StochS grid. We use a grid whose density type is featureless e.g. a
Gaussian, an exponential or a Lorentzian grid. These densities are characterized by
their center and width parameters. The center is chosen at zero because it is where
the data provides most of the information. To determine a reasonable starting value for
the width, we utilize the non-negative least squares solution. This solution is composed
of few sparse non-zero values (sharp peaks). Their positions can be considered as a
sample drawn from our chosen grid density and used to estimate its width parameter. A
widely used method for estimating the parameters of a density function is the maximum
likelihood estimator (MLE). For example, the MLE of the width of a Gaussian density
is the standard deviation of the sample

. IS Fix?
0= ZE—, (3.108)
Zi I

and the MLE of the width of an exponential density is the mean absolute deviation

Yl

where Fj, x; are the weights and positions of the non-negative least squares peaks. Of
course, obtaining the NNLS solution needs itself a grid. Fortunately, this solution is
mostly grid independent. For large and fine enough grids, the positions of most peaks
are stable. The only exception is the last peak (usually with very small weight) and
also the first peak when the model extends to —oo. These outliers represent the integral
of the model’s tail and are sensitive to the noise on the data. Moreover, they usually
sit on the last and the first grid points respectively, and thus their locations depend
on the cutoff of the NNLS grid. We exclude these peaks from estimating the width in
Egs. (3.108) and (3.109) to make it more reliable.

The above recipe provides us with a very good initial width estimate. For example,
the width estimate for a Gaussian in test case 4 ranges between 0.35 —0.52 depending on
the noise vector added to the data (Remember that the exact width is 0.5). To make sure
that the estimated width is reliable, we apply StochS using not only one grid size n but
rather different grid sizes (usually powers of two). If the results and the fit histograms
are relatively stable with increasing grid size, we can trust the results. Otherwise, we
vary the width and choose the one for which the fit is the lowest and least dependent
on the grid size. We could also try different types of grid densities and compare their
dependence on the grid size. Usually this is not necessary, however, since the grid width
is the most important factor affecting the results.

(3.109)
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Figure 3.25.: StochS results for test case 4 using Gaussian grids of different widths (cap-
tions) and different sizes (labels). For the largest width, the results have
spurious features and their fit histograms have a strong dependence on
the grid size. As the width decreases, the spurious features and the grid
size dependence become weaker till they disappear when the grid width
matches the exact one 0.5. When the width is lowered even further, the
discretization error becomes extremely large and the fit is very bad.
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3.4. Gridless stochastic sampling (gStochS)

Instead of trying to find the grid with the maximum posterior probability, we can average
over the results of different grids weighted by their posterior probability

/dx P(x|g) fstoens(T;X) . (3.110)

Using Bayes rule for the grid (Eq. 3.104), this can be computed by proposing grids from
their prior distribution P(x) and averaging StochS results weighted by the marginal
likelihood P(g|x)

1

Ple) /dX P(x) P(g|x) fstocns(:x) . (3.111)

As we saw earlier, computing the marginal likelihood is very hard in practice. Fortu-
nately, we do not need it, because it can be canceled out with the normalization constant
of StochS as following

% /dx P(x) P(g|x) fstocns(;x)

1 .
“P(g) /dx Plx) Plelx) /dF P(Flg,x) f(z; F,x) (using Eq. 3.96)
(g|F,x)P(F|x)

~ g [ P Py [ ar Dlei)

oc/dx P(X)/ dF e X*FX/2 (3 F x) .
F>0

f(z;F,x) (using Eq. 3.97)

The price we have to pay, however, is developing a new sampling algorithm where each
sample is composed of both the grid points and the model integrals. This is discussed
in the next section.

A simple and straightforward prior for the grid points is P(x) = [, p(x;) where
grid points are drawn identically and independently from some density function p(zx).
Note that a valid gird requires an ordering of its points which is not guaranteed by this
prior. Nevertheless, we can impose the ordering implicitly inside the mapping f(x; F, x).
Substituting back in the last integral, we get

Sestoens (2) / dx H p(x / dF e X'®X/2 f(1:F x) (3.112)
F>0

where C' normalizes the expression. We call this sampling over grids with such uncorre-
lated prior: gridless stochastic sampling (gStochsS) .

Comparison with StochS It is important to emphasize the difference between the prior
density function p(x) in gStochS and the grid density function p(z). The grid points in
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StochS are fixed and distributed according to p(x) with or without data. In contrast,
the grid points in gStochS are allowed to move and they follow the prior density p(x)
only in the absence of data. As explained later, the data in gStochS can override this
prior and average over appropriate grid densities. Interestingly, since each StochS grid
corresponds to a gamma process, we can also see gStochS as an average over the default
model of gamma process. In Appendix A, we derive the discrete exponential process as
the stochastic process (integration measure) corresponding to gStochS.

Comparison with Beach’s delta sampling By using delta functions in the mapping
f(z; F,x), with model integrals representing the weights and grid positions representing
the shifts

f(z; F,x) = ZE5($—$i), (3.113)

gStochS is technically equivalent to the delta function walker scheme suggested by Beach
in [31]. Nevertheless, there are several conceptual differences. First, Beach presents his
method as an extension of StochS with ”an additional degree of freedom that turns out
to be equivalent to default model.” This fails to recognize that StochS already has a
similar degree of freedom represented by the grid density, which even has a stronger
effect on the results than the prior denisty of gStochS. Second, he derives the method as
a discretization of some integration measure. As shown in the appendix, this integration
measure corresponds to a multinomial process whose discretization leads to a set of
delta functions with varying shifts and fixed weights. The actual integration measure
corresponding to this method is derived in the appendix. Finally, Beach uses a fictitious
temperature parameter and chooses the value corresponding to a jump in the specific
heat. The use of such a parameter is not justified in the Bayesian framework. Given
the correct covariance matrix of the data noise, this parameter should be set to one [3].
Otherwise, we are risking over- or under-fitting the data.

Comparison with Mishchenko’s stochastic optimization Using constant functions in
the mapping f(z; F,x), the models sampled by gStochS can be seen as a set of contiguous
rectangles with F representing weights and x representing the positions

fa) =3 L e (;) |

o Litl — T Tiv1 — T4

This is comparable to the stochastic optimization method by Mishchenko [34, 35], where
the model is represented as a sum of independent rectangles

r — T
f(a:):zi:hirect( o ),

with z;, h; and w; representing the position, height and width of each rectangle, respec-
tively. The basic idea of Mishchenko’s method is to average several models that fit the
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data well enough, but do not overfit it. Finding those ”good” models is done by mini-
mizing a deviation measure which is taken as the L;-norm of the difference between the
actual data and the data produced by the model. This method can be recast in Bayesian,
albeit strange, terms as following: The likelihood is set to a constant for models that
have deviation measures below a certain threshold and zero otherwise. In contrast to
the Gaussian likelihood, this likelihood is not justified by any knowledge about the noise
on the data. The prior is hard to specify because of the technicalities applied during the
updates. However, in its simplest form, the model parameters x;, h; and w; are sampled
from flat distributions with cutoffs that are hyper-parameters of the method. Moreover,
the sampling in this method is quite inefficient leading to a huge computational cost.

3.4.1. Sampling algorithm

The multidimensional integral of gStochS (Eq. 3.112) is evaluated using a Monte Carlo
sampling algorithm. We start from some initial model on an initial grid. We use a
StochS grid with density p(x) and n points as the initial grid and the perturbed data
sampling (PDS) solution as the initial model.

The model integrals are then updated on the current grid as done in StochS. Given the
model integrals, the grid points are updated one at a time using a Metropolis-Hastings
algorithm explained below. All samples of F and x are stored during the sampling, and
the average model fysiocns(%) can be evaluated later at any point = by evaluating each
sampled model f(z;F,x) at this point and averaging the result.

The Metropolis-Hastings algorithm for sampling grid points has the following accep-
tance probability
e X2 p(ar) g(a; — @)
e @i2 p(x;) q(x; — 7)) 7

r= (3.114)
where ¢(z; — x}) is the proposal distribution of moving grid point ¢ from an old position
x; to a new position z;. In order to get a high acceptance rate, we need a proposal
distribution that takes into account both the data factor e **/2 and the prior density
function p(z). Suppose that the data factor can be approximated by a Gaussian of mean
, and width o, this Gaussian alone can be a good proposal probability for most cases.
However, when a grid point is far way from zero or its weight is very small, the data
provides very little information and the prior density p(x) becomes more important.
Therefore, we combine the data Gaussian with another Gaussian centered around the
old position z;, whose width equals the width w of the density p(z). The product of
the two Gaussians is again a Gaussian with mean p = o(u, /oy + z;/w) and width
o =1/(o;" +w™"). We use this as our proposal distribution which leads to an efficient
sampling of the grid points.

Kernel evaluation points Computing the data corresponding to each sample requires
evaluating the kernel at some point in each grid interval. A simple choice is using the
midpoint. However, this choice leads to some unnecessary computational overhead when
the grid points are sampled. Updating one grid point would affect the midpoints of two
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neighboring intervals and the kernel needs to be reevaluated twice. A convenient solution
is to evaluate the kernel at either end point of the interval. We choose the right end
point for positive intervals and the left end point for negative ones. This allows us to
get a symmetric result around zero when it exists. To avoid ambiguity for an interval
extending from negative to positive x, we fix an extra gird point at x = 0. Note that with
the introduction of this extra fixed point, the number of sampled grid points becomes
the same as the number of intervals and thus the sizes of the position vector x and the
integrals vector F are now equal. Moreover, the kernel needs to be evaluated only at
the sampled grid points. We can now write the data corresponding to the sample [F, x|
in vector form as

grx = K(x) F. (3.115)

Notice how the data vector is a linear function of the model integrals but a non-linear
function of the grid points.

Gaussian approximation of ¢~X*®/2:  For efficient sampling, we need a quadratic ap-

proximation of the data fit as a function of the grid points. Let us write the data fit as
a function of the new grid position 2}

g— Y K(z))F; - K(@)F,
j#i

X2 () = (3.116)

Now we expand the kernel vector K(x}) to second-order around the old position x;

(2

K(7)) = K(z;) + 0K(2;) [z} — 2] + % K (x;) [ — z)? + ... (3.117)

Substituting back in the fit expression and keeping only terms to the second-oder in z,
we find

(z)) mr'r =2 [fTOKF [« — o] + [FPOK] 0K, — Fir" 0°K;] [« — z)?, (3.118)

where r == g — 3" K(z;)Fj is the old residual vector and 0K; = 0K(z;), O°K; =
0?K (z;). By completing the squares, it can be written in the following suggestive form

X (@) = (z) — py)? /os + const. (3.119)

where p, = x; + FiI"TdK/af< and 0;2 = FdeTdK — FErTd?K. As a result, the data
fit factor e X*/2 can be approximated at the old position by a Gaussian of mean p, and
width o,. Note that when the fit has negative curvature at the old position z;, the width
will be negative and this Gaussian approximation breaks down. In this case, we use as
a proposal distribution only the Gaussian centered around the old position x;, whose
width equals the width w of the prior density p(z).
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Symmetric cases For cases where the model extends only from 0 to oo, the Gaus-
sian proposal may give inadmissible negative values. We take the absolute value and
make sure that the acceptance ratio contains the correct proposal probability i.e. the
probability of proposing both the negative and positive values.

Moving several points In hope of having larger sampling steps, we derived the quadratic
approximation of the fit as a function of more than one grid point and used it to form
a multidimensional Gaussian proposal distribution. However, we found this to give less
efficient sampling than single updates. The problem is two-fold. First, updating sev-
eral points together means that it is more likely to include a point where the quadratic
approximation fails. Second, points that are near to each other, give rise to a singular
or near-singular covariance matrix of the proposal probability. This leads to very large
steps, for which the approximation is not valid anymore.

Sampling model integrals The model integrals F are sampled using blocked modes
sampling with a random power-of-two block size. Interlacing of blocks is not necessary
here as in StochS because the grid points are moving and there is no danger of effects
at the block boundaries. However, the movment of grid points implies that the kernel
matrix is changing, so the SVD of its blocks should be recalculated after each update of
the grid points. Since SVD is computationally heavy, we try to utilize its result more,
by performing several consecutive updates of the model integrals for each sampled grid.

Averaging and binning Averaging gStochS samples requires evaluating the mapping
f(z; F,x) on some fixed grid. We call it the binning grid to distinguish it from the grids
sampled by gStochS. Let us denote its intervals as B; and call them bins. The binning
would be different depending on the mapping f(x; F,x). Assuming that each gStochS
sample represents a set of delta functions with weights F; and positions z;, the ith bin
average is computed as

1L 1
Jir N Z len(B;) Z Fy (3.120)

k=1 x?EBi

where k is indexing gStochS samples and N is the total number of samples. Alternatively,
we can assume a constant value inside each interval I}c of the kth grid sample. This
implies that the corresponding model integral F jK should be split proportionally among
the bins that intersects this interval

N n
1 1 len(B; NZF)
fix N Zkl len(B;) Zl len(Z) i (3.121)

j=

The latter type of binning can be thought of as a linear interpolation of the earlier one
and thus it leads to a smoother average. Nevertheless, whatever binning we use, the
averages are similar when the sampled grids are fine enough (i.e. the grid size n is large
enough), and the difference is only visible when they are very coarse. For simplicity,
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Figure 3.26.: gStochS average results for test case 4 using uniform binning grids of dif-
ferent bin sizes (labels). Increasing the bin size reduces the statistical error
in the average.

we use the delta binning on a uniform binning grid. Pay attention that the bin size
affects the statistical error of its average. Larger bins have lower fluctuations and better
averages. Roughly speaking, the error goes down with the square root of the bin size,
and sometimes even faster due to negative correlation between neighboring bins. In
Fig. 3.26, we show how increasing the bin size reduces the fluctuations in a gStochS
average.

3.4.2. Density dependence

The cutoff dependence of StochS (see Fig. 3.27) was our primary motivation for studying
the grid dependence and developing gStochS, so we would like to check first this effect
in gStochS. We use a uniform prior density with cutoffs: 8, 16, 32 and 64. To make the
results comparable with those of StochS, we use the same grid sizes as in StochS. The
results are shown in Fig. 3.28 and there is almost no effect of the cutoff on the result.
In Fig. 3.29, we also show gStochS using Gaussian and Lorentzian prior densities both
with width parameter 4 and grid size 128. Unlike StochS, the two densities give almost
identical results (compare with Fig. 3.21) .

Do these results show that gStochS is independent of the prior density function p(x)?
No! The density p(x) still acts as a default model and the grid size still acts as its
strength. For example, Fig. 3.30 shows that gStochS gives back the density function in
the absence of any data except normalization.

Moreover, there are still test cases where the density function affects the results of
gStochS considerably. For example Fig. 3.31 shows gStochS results for test case 4 using
a Gaussian prior density of different widths. Like in StochS, using a density with large
width leads to spurious features whose strength increases with that width. The effect is,
however, weaker in gStochS than in StochS (compare with Fig. 3.25). Notice how the
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Figure 3.27.: StochS results of test case 3 using uniforms grid of spacing 0.25 and in-
creasing cutoff (label). As the cutoff increases, spurious features develops
and the result gets worse.
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Figure 3.28.: gStochS results of test case 3 using uniform densities of increasing cutoff
(label). The grid sizes are respectively: 32, 64, 128 and 256. The results are
almost independent of the cutoff (compare to StochS results in Fig. 3.27).
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Figure 3.29.: gStochS results of test case 3 using a Gaussian density and a Lorentzian
density both of width 4 and size 128. The results are almost identical
(compare to StochS results in Fig. 3.21).
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| Gaussian
| Lorentzian

Figure 3.30.: gStochS results of test case 3 using a Gaussian density and a Lorentzian
density and only the model normalization as data. In both cases, gStochS
gives the prior density function itself confirming that this density acts as
a default model.

fit gets better, and the dependence of the histograms on the grid size becomes weaker
as the width becomes smaller. The fit histograms for widths 0.25 and 0.5 are almost
the same (strictly speaking those of 0.25 are scarcely worse than those of 0.5), so one
cannot judge which width is better from the fit alone. However, comparing the results,
0.5 has clearly the lowest dependence on the grid size and thus it is preferable. This is
a reminder that the fit histograms are only heuristics for determining which density is
better. We should also always check the dependence of the resulting models on the grid
size.

In general, we can select the prior density of gStochS as we selected the grid density
in StochS. Use some featureless density function centered at zero and estimate its initial
width from the NNLS solution. Then vary the width and choose the value for which the
dependence of both the results and fit histograms on the grid size is the weakest. This
can be repeated for different types of density functions and choosing again the type with
the best fit histograms and the least dependence on the grid size.

Effective grid density In Fig. 3.32, we show the histogram of the grid positions for test
case 3 using a uniform prior density and cutoff 16. Despite the flat prior that extends up
to 16, the data guides the grid points to reorganize themselves and move to the important
region near zero. Consequently, we see that although both StochS and gStochS have a
default model, the latter allows the data to override this prior information leading to
less biased results. We can use this histogram as an effective grid density in StochS to
approximate gStochS as shown in Fig. 3.33. Of course, this is not a practical procedure
because we already need the gStochS result to find this effective grid. Nevertheless, the
matching results show that this effective grid is the most favorable gird sought by StochS
grid recipe.
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Figure 3.31.: gStochS results for test case 4 using Gaussian prior densities of different
widths (captions) and different sizes (labels). Compared to StochS results
(Fig. 3.25), the spurious features and the dependence on the grid size is
much weaker but still exits.
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Figure 3.32.: Histogram of the grid positions sampled by gStochS for test case 3 using a
uniform density of cutoff 16. This histogram can be thought as an effective
grid density to be used in StochS (see Fig. 3.33).
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Figure 3.33.: Comparison of gStochS using a uniform prior density against StochS using
the corresponding effective grid density (see Fig. 3.32).

3.5. Extended Stochastic Sampling (eStochS)

As explained in the last section, gStochS still has a dependence on the prior density
p(z). In most cases, this dependence is very weak and any reasonable choice would give
equally good results, but sometimes the results still depend noticeably on the chosen
density, especially its width w. The first option to deal with this dependence is to reuse
our StochS grid recipe and choose the width with the best fit histograms and the least
dependence on the grid size.

Another option is to average over the width w weighted by its posterior probability

/dw P(w|g) festochs(z;w) . (3.122)
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This requires specifying a prior for the width, the simplest of which is a flat distribution.
Following steps similar to those between Eq.3.110 and Eq. 3.112, we get

1 )
— | dw /dx T w / dF e X" FX)/2 £ F x) . 3.123
:/ Motesw) | (5P, x) (3123)

One could go about sampling the width directly but it would be inefficient. The rea-
son is that updating the width would change the prior probabilities of all grid points.
Therefore, for a large number of grid points, one would be forced to take very small
updates to achieve a reasonable acceptance rate. The more grid points, the less efficient
the sampling is. There is, however, a much better way.

We notice that unlike the grid points x and model integrals F, this width parameter
w is not directly related to the data so the above expression can be rearranged such that
the integral over the width is a function of the grid points only

1 2
E/dx / dF ¢X (Fx)/2 f(x;F,X)/dw Hp(x,»;w) : (3.124)
F>0 ;

-~

=P(x)

We can perform the width integral P(x) analytically for the following family of density
functions

1 1 1
p(z; w) < — exp l—— <m> ] where ¢ > 0. (3.125)

w g\ w
This is known as the exponential power distribution and it includes the Gaussian dis-

tribution (¢ = 2), the Laplace (aka double-exponential) distribution (¢ = 1) and the
uniform distribution (¢ — oo). Using this density, the integral over the width reads

P(x) oc/dw %exp [—Zjé ('Zj‘)q] :/dw %exp {—é”ﬂg} . (3.126)

where the L,norm? is defined by

1/q
Ixllq = (Z \xi!q> : (3.127)

We use this norm to make the following change of variable

Ixllg  dw |l
— - = 3.128
w dz 22 ( )
and the integral over the new variable is independent of the grid points
1 "9 21
P(x) o¢ 7= [ dz 2" "exp |——| . (3.129)
[ q

2For q < 1, this expression does not define a norm because it violates the triangle inequality.
Nevertheless, our results still hold also in that case.
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Substituting back in the original expression Eq. (3.124) and absorbing the integral over
z in the overall normalization constant we get

X
x|l

1 1 2
festoens () = E/d — / dF e X EX/2 (4 F x) . (3.130)
0

We call this sampling method: extended stochastic sampling (eStochsS).

To conclude, using the L,-norm in eStochS is equivalent to using a g-th power expo-
nential density function in gStochS and integrating flat over its width parameter. More
specifically, using the Ls-norm, eStochS is equivalent to using a Gaussian prior density
in gStochS and integrating over its standard deviation. Similarly, using the L;-norm
is equivalent to using an exponential (or Laplacian) density and integrating over the
scale parameter while using the L.,-norm corresponds to using a uniform density and
integrating over the cutoff.

Sampling algorithm The sampling algorithm of gStochS can be easily adapted to
eStochS. We simply replace the prior density function in the acceptance ratio by the
power ratio of the norms of grid samples. We also choose a reasonable value for the
width parameter w of the proposal distribution e.g. estimated from the NNLS solution.

Alternative derivation The previous discussion derives eStochS by integrating over
the width parameter of gStochS. Here we present a different way of arriving to eStochS,
which is how we actually found it. Since grid points in gStochS are already free to
relocate themselves, one may wonder: wouldn’t it be sufficient to take the limit of the
width of the prior density to infinity and let the data determine the width of each grid
sample (measured by the norm of its vector)? The answer is negative as evident from
the bad results of test case 4 using large widths (see Fig. 3.31). The problem lies in the
prior distribution of the grid points. Taking the width to infinity, all grid vectors become
equally probable. However, there are more vectors with large norm than with small one
(this idea was also used in Sec. 2.9). Therefore, the grid samples would almost certainly
have a large norm even if the data says otherwise. The solution is to find the density® of
vectors with a specific norm r and divide by it. For the Lo-norm, this density is nothing
but the volume of an n — 1 dimensional hypersphere with radius r and it is proportional
to r"~!. This gives eStochS, which can now be seen as gStochS with a flat prior over the
Lo-norm. This new prior is uninformative about the width of a grid sample and thus
allows the data to choose it correctly.

3.5.1. Results

In Fig. 3.34 and 3.35, we show eStochS results for test cases 3 and 4, respectively. The
results for the Li- and Ls- norms are quite similar to each other in both cases, while the

3Here we are talking about the density of points in an n-dimensional space. This should not be
confused with the prior density function p(zx).
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Figure 3.34.: eStochS results for test case 3 using different norms (captions) and different
sizes (labels). We see from the fit histograms that the results using the L;-
and Lo- norms are reliable, while that of the L,-norm is not.
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sizes (labels). Here again, the L.,-norm gives bad results.

Figure 3.35.: eStochS results for test case 4 using different norms (captions) and different
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Figure 3.36.: eStochS results for test case 3 using Lo-norm and different sizes (labels).
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Figure 3.37.: eStochS results for test case 2 (with Gaussian peaks) using Lo-norm and
different grid sizes (labels).

L.-norm gives bad results. The dependence of the fit histograms for the L;- and Lo-
norms on the grid size is very weak which indicates a good agreement with the data.
On the other hand, the fits for the L,.-norm get worse faster as the grid size increases
indicating a bad choice. We have noticed this trend in all the test cases we performed:
L1- and Lo- norms give similar results while L,.-norm gives a much worse result. The
bad performance of eStochS using the L.,-norm is surprising in view of the good results
of gStochS using a uniform density (see Fig. 3.28). This is discussed further in Sec. 3.5.2.

The grid size independence of the fit histograms for the L;- and Lo-norms is quite
impressive. This can be explained by the fact that the exact models are smooth enough
such that the exponential or Gaussian default model implied by eStochS agrees very
well with the data. On the other hand, when the exact model is less smooth, we would
expect a larger dependence on the grid size.

To test this, we shift the second peak of test case 3 to the far right and show the result
in Fig. 3.36. Now both the models and the fit histograms show a slight dependence on
the grid size as expected. We observe this even more clearly in Fig. 3.37 showing eStochS
results of test case 2 (with Gaussian peaks). Due to the large gap in this case, a Gaussian
default model does not agree as well with the data as in other test cases. Therefore,
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Figure 3.38.: Histograms of the scaled Lo-norm of grid samples for test case 4 us-
ing eStochS with different grid sizes (labels). The scaled Lo-norm of
a grid sample x is calculated as the standard deviation of its points

w = |x|3/n = Vi z?/n. The histograms are centered around the

width of the exact model 0.5.

there is a clear dependence on the grid size. As the grid size increases, the two peaks
become smoother and the result becomes more biased towards the default model which
is a Gaussian covering the gap.

Effective width In Fig. 3.38, we show the histogram of the scaled Ly-norm of grid sam-
ples for test case 4. We calculated the scaled norm of a grid sample as & = /Y, 2?/n
which approximates the width of the effective grid density. As the grid size n increases,
the histogram becomes narrower, because this quantity converges to the effective den-
sity’s width. The mean of this histogram can be thought of as an effective width to be
used in gStochS for approximating eStochS. This effective width is what our gStochS
recipe would try to find. Notice how eStochS found that the optimal width is 0.5 without
the need of applying the recipe. This justifies, after the fact, our earlier reasoning that
gStochS results of width 0.5 are more supported by the data than the results of width
0.25 despite both of them having similar fit histograms (Refer to Fig. 3.31 for gStochS
results).

3.5.2. eStochS vs. fit histograms

Let us reexamine eStochS results for test case 3 using the L ,-norm shown in Fig. 3.34e.
These results are equivalent to averaging over the results of gStochS using uniform prior
densities with different cutoffs. According to Eq. 3.122, each result would be weighted
by the posterior probability of its cutoff P(w|g). Using the grids sampled by eStochS, we
can approximate this distribution by the histogram of the maximum grid point shown
in Fig. 3.39. The histogram shows that the sampled cutoff varies roughly around 5.
Remembering that gStochS results of this test cases were good for large cutoffs up
to 64 (see Fig. 3.28a), it may then be surprising that eStochS averages only over such
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small cutoffs. Since the fit histograms of gStochS for different cutoffs are equally good
(Fig. 3.28b), one would expect that eStochS should average over a larger range of cutoffs,
but it does not!

To understand the reason, note that the posterior probability used in eStochS is
inversely proportional to E[eXQ/ 2] and cannot be predicted from the fit histograms (see
Eq. 3.107). Having a good fit histogram, i.e. a low mean fit E[x], does not guarantee
a low expectation value E[eXQ/ 2] because this value is very sensitive to the tail of the
histogram. Therefore, although the fit histograms are quite reliable in choosing good
values of the width, they cannot be used to predict the values averaged by eStcohS.

Since we can get an eStochS result at roughly the same cost of a gStochS result for a
single width value, it is convenient to apply eStochS first. Its fit histograms can tell us
when something goes wrong. Only then, we have to apply gStochS for different width
values and judge the best one using the fit histograms.

3.6. Conclusion

In the original stochastic sampling method (StochS), we used a flat prior over the non-
negative models and averaged them to smooth out the details that are not supported by
the data. One would expect that such an ”uninformative” prior would provide unbiased
results. Using our efficient sampling algorithm, BMS, we were able to perform calcula-
tions on larger and larger grids. This revealed that StochS results depend implicitly on
the grid where the grid density acts as a default model and the grid size as its strength.
This important grid dependence of StochS was beforehand unknown in the literature.
We gave an explanation for the effect.

We provided a recipe for selecting a suitable grid and showed how to use the fit
histograms to judge the quality of different grids. We also used the dependence of
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Figure 3.40.: The hierarchal structure of stochastic sampling methods.

the results and histograms on the grid size to check how much bias the grid density
introduces into the results. With the proper choice of grid, StochS gives very good and
robust results and is able to resolve both sharp and broad features in the model.

To reduce the grid dependence, we extended StochS into a gridless method (gStochS)
by sampling a fixed number of grid points from a reasonable density function centered at
zero. In gStochS, this function also acts as a default model but its effect on the result is
much reduced in comparison to the effect of the grid density on StochS results. In some
test cases, the results were, to a large extent, even independent of the chosen density
function. In other cases, they still depended critically on its width. We used a recipe to
choose the proper width that is similar to the StochS grid recipe.

To avoid fixing the width, we went one step further and extended gStochS to sample
flat over the width parameter of the default model. The new method (eStochS) is then
able to automatically find the width values compatible with the data and average over
them. The prior used by eStochS assumes that the model is concentrated around zero
with unknown width and structure. For many cases, this is our best prior guess and it
gives us good and robust results.

Our approach to grid dependence led us to the hierarchy of stochastic sampling meth-
ods shown in Fig. 3.40. However, it is by no means the final answer to the choice of
a grid prior. We can still extend the method by varying over other parameters of the
default model, and each new parameter requires specifying a prior whose choice is not
unique. For example, if we have sufficient reason to suspect the existence of a gap at
zero, then we could extend the default model to parametrize the width of the gap. We
may start with a simple recipe to determine the width and consult the fit histograms to
the determine the values supported by the data. If we then detect a strong dependence
on the gap width that requires trying many different values, it may worth developing an
algorithm to sample this parameter.

We could even average over the grid size. We actually tried this for eStochS using a
float prior and found, as expected, that the method chooses a high number of points
when the default model is highly compatible with the data as in test case 4. But when
the prior assumption of being concentrated around zero is not satisfactory enough, like
in test case 2 with two distinct peaks, the method chooses a very low number of points.
In the end, we decided to keep the grid size as an independent control parameter of all
stochastic sampling methods. A strong dependence on the grid size indicates a strong
bias towards the prior and way from data, while a weaker dependence indicates more
robust results.
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4. Realistic Case Studies of Stochastic
Analytic Continuation

In this chapter, we apply stochastic sampling methods to two realistic test cases taken
from the recent literature where the exact result is unknown. The first case is obtaining
the spectral function from DMFT calculations, while the second is obtaining the spin
susceptibility from lattice QMC calculations. The results show that these methods do
not only perform well but also indicates when the data does not agree with the default
model. We also report the timings of the different methods and compare their scaling
with the theoretical estimate.

4.1. Spectral function from DMFT

We received from D. Bergeron and A. M. Tremblay the data of DMFT calculations for
the Hubbard model with U = 6 [19]. The relation between the data and the model is as

following

Gliw) = [ ¥ 1 . (4.1)

21w, — W

The data is the Fermionic Green function G (iw,) and was given at the first 400 Matsubara
frequencies w,, = (2n + 1)7/f with inverse temperature § = 100. An estimation of the
covariance matrix of the data noise was given. Tremblay et al. also provided us with
their analytic continuation using MaxEnt. They used a Gaussian default model with
width 3.6 and regularization parameter o = 500. Their result is shown in Fig. 4.1.

We start by applying StochS to this test case. Since the model extends over the whole
real axis, we use a Gaussian grid centered at zero. Using the non-negative least squares
solution, we estimate the second moment of the spectral function to be around 3.6 and
use it as an initial width of the Gaussian. We perform StochS using different grid sizes
n and show the results in Fig. 4.2e. In Fig. 4.2f, we also show their fit histograms. The
very low dependence of the models and the fit histograms on the grid size indicates that
a Gaussian grid of width 3.6 is indeed a good choice and agrees well with the data.
To check the stability of the results as a function of the grid width, we vary it on a
logarithmic scale around 3.6. In the other plots of Fig. 4.2, we show StochS results using
lower and higher values of the width. The grid of width 1.8 is too narrow to resolve the
tail of the model leading to a high discretization error. The grid of width 2.5 gives very
good results that are similar to width 3.6. Looking at the fit histograms, we see that
width 2.5 is slightly preferable to 3.6. However, looking at the models and their grid
size dependence, we conclude that the latter is more reliable. As the width increases
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Figure 4.1.: MaxEnt result (solid red) for the DMFT test case (provided by D. Berg-
eron et al. [19]). The default model (dashed blue) is a Gaussian with width
3.6.

above 3.6, the fit histograms show a stronger dependence on the grid size, indicating a
disagreement with the data.

In practice, we would have been satisfied with the StochS results for width 2.5 or 3.6.
However, we also apply gStochS and eStochS here for completeness. In Fig 4.3, we show
the results of gStochS using a Gaussian prior density function for the same widths used
in StochS. Here again, we get the best results using a prior density with width 2.5 or 3.6.
The results of width 2.5 are now more similar to those of width 3.6 and both are similar
to StochS results using width 3.6. Note also that the results of other widths get better in
comparison to StochS, confirming that sampling over the grid points in gStochS makes
the results less biased.

In Fig. 4.4, we show the results of eStochS, which are similar to the best ones obtained
by gStochS. Moreover, we show in Fig. 4.5 the histograms of the scaled norm of the
sampled grids. This quantity approximates the width of the effective grid density, so
these histograms show us that the sampled values of the width are centered around the
best value 3.6. They also show that the posterior probability P(w|g) of width 2.5 is
very low, despite being supported by the fit histograms of gStochS. This is a reminder
that the fit histograms and eStochS do not always agree when judging the quality of a
width value. In this test case, the disagreement is minor and eStochS gives equally good
results. Yet, eStochS is faster and easier because it needs only runs for different grid
sizes, while in gStochS, we need such runs for each width separately.

Comparing stochastic sampling results with MaxEnt, we see that they are almost
identical to MaxEnt! This should not be surprising because the data is of high-quality
(its noise standard deviation is of the order 107%), so this test case is quite easy. This is
confirmed by the fact that even simpler and cheaper methods like non-negative Tikhonov
provide results of comparable quality (see Fig. 4.6).
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Figure 4.2.: StochS results for the DMFT test case using Gaussian grids of different
widths (captions) and different sizes (labels).
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Figure 4.3.: gStochS results for the DMFT test case using Gaussian prior densities of
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4.1. Spectral function from DMF'T
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Figure 4.4.: eStochS results for the DMFT test case using Ls-norm and different grid
sizes (labels). The tiny fluctuations are sampling noise.

Figure 4.5.: Histograms of the scaled Ly-norm of grid samples for the DMFT test case
using eStochS with different grid sizes (labels). The scaled Lo-norm of a
grid sample x is calculated as the standard deviation of its points w =

x5 /n = /3 2i/n.
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Figure 4.6.: Non-negative Tikhonov results for the DMF'T test case using different values
of the regularization parameter a (labels). This range of values was chosen
according to the discrepancy principle.
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4. Realistic Case Studies of Stochastic Analytic Continuation

4.2. Dynamical spin structure factor from lattice QMC

We received from J. Becker et al. from S. Wessel group at RWTH Aachen the data of
lattice QMC calculations for the Spin-1 Heisenberg chain [36]. The goal is estimating
the the dynamical spin structure factor S**(w). The relation between the data x**(iw,)
and the model S#*(w) has the following form

2z (: > dw W(l — e—ﬂw) 2z
X (an)Z/O T Wt S (w) - (4.2)

The data was given at the first 201 bosonic Matsubara frequencies w, = 2n7/f with
inverse temperature § = 24. The covaraince matrix of the data noise is assumed to be
diagonal and estimations of its diagonal elements were given.

First, we apply StochS. Since the model in this test case extends over the positive
half-line only, we use an exponential grid. Using non-negative least squares, we estimate
the first moment of the model to be around 0.5 and use it as an initial width of the
grid. In Fig. 4.7, we show the results using different grid sizes. Clearly, this grid is too
narrow to resolve the tail of the model leading to a high discretization error. Therefore,
we increase the width of the grid logarithmically up to 16.0 and show the results using
different widths in Fig. 4.8. As the width increases to 4.0, the fit histograms shift to the
left. Increasing the width further shifts the histograms back to the right, so we conclude
that width 4.0 is the best width. In Fig. 4.9, we show close-ups of the peak and the tail
for the different widths. Notice that as the width increases, the number of grid points
near zero decreases leading to a lower resolution of the peak. Also the hump in the tail
is shifted to the right and more pronounced for large widths.

The strong dependence of the StochS results on the grid size indicates that the grid
does not agree well with the data. This is understandable because the default model,
which is the exponential grid density, is very different from the exact model, which
evidently has a gap at zero, a very sharp peak and a long tail. We repeat the calculations
using gStochS and expect an improvement. Fig. 4.10 shows that gStochS results indeed
have a weaker dependence on the grid size. Checking the fit histograms, we find that the
large width 16.0 is the best and has even better fits than those of StochS with width 4.0.
In Fig. 4.10, we show close-ups of the peak and the tail. The main difference between
StochS and gStochS results is the height of the sharp peak. StochS gives a peak that
is about 3 times higher than that of gStochS. However, we know from experience that
when the grid density disagrees with the data, StochS tends to make features sharper
than they really are. Therefore, gStochS results should be more reliable. This is also
indicated by the fit histograms. The grid size dependence of the peak in gStochS is
expected since increasing the grid size biases the results towards the exponential default
model. Another difference between the two methods is the hump in the tail, which is
broader in gStochS and less dependent on the grid size.

In Fig. 4.12, we show eStochS results using the L;-norm. The hump in the tail looks
different from gStochS results. Checking the histograms of the scaled norm, shown in
Fig. 4.13, we see that the sampled values of the width are actually less than 1.0. This is
may seem surprising since the fit histograms of gStochS indicate that the values of the
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Figure 4.7.: StochS results for the lattice QMC test case using an exponential grid of
width 0.5 and different grid sizes (labels).

width up to 16.0 are equally good and that high values are even slightly better than small
ones. This apparent contradiction between the fit histograms and eStochS comes from
the fact that they use different criteria to judge the quality of a width value. The center
of a fit histogram represents the expectation value E[x], while the widths in eStochS
are weighted by their posterior probability P(w|g) which is proportional to E[eX?/?] (see
Sec. 3.5.2). So far we have found that the fit histograms provide a better criterion for
judging the quality of stochastic sampling results. Moreover, the scaled norm histograms
(see Fig. 4.13) shift to lower values as the grid size increases, indicating a disagreement
between the data and the prior of the width in eStochS. Therefore, we conclude that
gStochS with width 16.0 and grid size 128 is our most reliable result.

Becker et al. also provided us with their stochastic analytic continuation result using
Beach’s method [31]. They used a completely flat default model with 1500 delta func-
tions. This method is closely related to gStochS and gives similar results as shown in
Fig. 4.14.

It is important to note that the peak in all stochastic sampling results is about 1000
times larger than the hump in the tail. We expect that for such difficult test cases, that
stochastic sampling methods to be the choice due to their ability of resolving both sharp
and broad features. For comparison, we show in Fig. 4.15 the results of non-negative
Tikhonov for a wide range of the regularization parameter a. None provides a result of
a quality that comes close to that of stochastic sampling!
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Figure 4.8.: StochS results for QMC lattice test case using exponential grids of different
widths (captions) and different sizes (labels). Checking the fit histograms,
the best result is using width 4.0.
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Figure 4.9.: Zooms on the peaks and tails of StochS results for QMC lattice test case
using exponential grids of different widths (captions) and different sizes (la-
bels). Note that the peak is about 1000 times larger than the tail.
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Figure 4.10.: gStochS results for QMC lattice test case using exponential prior densi-
ties of different widths (captions) and different sizes (labels). Checking fit
histograms, the best result is using width 16.0.
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Figure 4.11.: Zooms on the peaks and tails of gStochS results for QMC lattice test case
using exponential prior densities of different widths (captions) and different
sizes (labels). Note that the peak is about 1000 times larger than the tail.
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Figure 4.12.: eStochS results for the lattice QMC test case using L;-norm and different
grid sizes (labels).

)

Figure 4.13.: Histograms of the scaled L;-norm of grid samples for the lattice QMC test
case using eStochS with different grid sizes (labels). The scaled L;-norm
of a grid sample x is calculated as the mean of its points w = ||x[|;/n =

2 |wil/n.
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4.3. Setup and running times

Each stochastic sampling result was obtained by averaging the samples of 8 independent
runs. Each run generated 8 N samples where only every 8th sample is kept, while the rest
are discarded. This saved storage space and removed some of the correlation between
consecutive samples. The error bars of a result are computed as the standard deviation
of the averages of the independent runs, so they are not affected by the correlations in
the samples of the individual runs. Each run was executed on a single core Intel(R)
Xeon(R) CPU X5570 @ 2.93GHz.

In StochS, we used N = 10000. In gStochS/eStochS, the used N depended on the
grid size n. We used a lower number of samples N for larger grid sizes because the error
bars of these methods using a fixed binning grid scales roughly with v/ Nn. Therefore,
keeping the product Nn fixed gives roughly the same error bars. For n = 128, we used
N = 20000 and then linearly decreased N as n increases.

The timings of a single run of StochS for different grid sizes n are presented in Ta-
ble 4.1. Although the theoretical scaling of the StochS algorithm is quadratic O(n?),
the table shows that our Python implementation scales almost linearly! This can be
explained by the fact that we have an O(n) Python loop, inside which we call several
O(n) functions from the Numpy library, which are implemented natively. Apparently,
the Python overhead is so large that the cost of Numpy functions is negligible for the
used values of n.

To test this interpretation, we wrote a simple Python script shown in Listing 4.1. This
script has a similar structure to StochS code. It has an outer Python loop of size n,
inside which we find the minimum of an n-sized array using a Numpy function amin. In
Fig. 4.16, we plot the timings of this Python code for different values of n. As expected
for small values of n, the computational time is linear. It starts to deviate from this
around n = 2084 till it becomes quadratic after n = 16385.

To check the Python overhead, we also wrote a similar C code, shown in Listing 4.2,
and plotted its timing for comparison. This code has the expected quadratic scaling
even for small n where it outperforms the Python code significantly. For n = 1024, the

n DMFET lattice QMC
128 18 min 17 min
256 40 min 35 min
512 80 min 70 min
1024 150 min 125 min
2048 300 min 265 min

Table 4.1.: Total running times of StochS for the DMFT and lattice QMC test cases for
different grid sizes n.
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4.3. Setup and running times

C code is about 10 times faster than the Python code. We expect a similar speed-up
when reimplementing StochS in C.

For similar reasons, the running times of gStochS/eStochs are also linear with the
grid size n (for a fixed number of samples N). However, since the number of samples
was taken to be inversely proportional to the grid size, we got roughly constant running
times. For the DMFT test case, the running time was about 18 hours, while for the
lattice QMC test case, it was about 3 hours. Again, with a C implementation, we expect
these running times to be reduced by an order of magnitude for typical values of n. The
difference in running times between the two test cases is mainly due to the difference in
the size of the data vector m. For the DMFT test case, we have 400 complex values i.e.
800 real values. On the other hand, for the lattice QMC, we have 201 real data values.
Theoretically, gStochS/eStochS should scale as O(m?) because moving one grid point
requires reevaluating a kernel vector of size m and transforming it into a basis where
the data is uncorrelated i.e. a multiplication by a matrix of size m x m.

1 import numpy as np
2 import time
3
1

1 def f(x):
5 return np.amin(x)

s sizes = [16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768] ;

o print "n\tTime"

o for n in sizes:

11 x = np.random.rand(n)

12 begin = time.clock()

13 for iters in range (1000):

14 for i in range(n):

15 b = f(x)

16 end = time.clock()

17 time_spent = end-begin

18 print ("%d\t%f"%(n, time_spent))

Listing 4.1: Python Code

1 #include <stdio.h>
> #include <stdlib.h>
3 #include <time.h>
4

5 double f(int n, double x[])
6 {

7 double min_x = x[0];

8 for(int i=1;i<n;i++)

9 {

10 if (x[il<min_x)

11 min_x = x[i];

12 }

13 return min_x;

14}
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Figure 4.16.: A comparison of the running times of a simple script written in Python
(Listing 4.1) and C languages (Listing 4.2). Although the algorithm scales
quadratically, the Python script shows a linear behavior for small input
size n. The reason is that Numpy function amin, which is implemented
natively, is much faster than the rest of the Python code.

16 int main(int argc, char *argv[] )

17 {

18 int sizes[12] = { 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384, 32768 1I;

19 printf ("n\tTime\n") ;

20 for(int k=0;k<12;k++)

21 {

22 int n = sizesl[k];

23 double x[n];

24 for (int i = 0; i < n; i++)

25 x[i] = rand()/ (RAND_MAX + 1.0);
26 clock_t begin = clock();

27 for(int iters = 0;iters<1000;iters++)
28 for(int i = 0; i<n; i++)

29 volatile double b = f(n,x);

30 clock_t end = clock();

31 double time_spent = (double) (end - begin) / CLOCKS_PER_SEC;
32 printf ("%d\t%f\n", n, time_spent);

33 }

34 return O;

35 F

Listing 4.2: C Code
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Summary and Outlook

This thesis deals with the analytic continuation problem for the fermionic and bosonic
spectral densities. In chapter 1, we start from the origin: the analyticity of Green and
correlation functions. We use the greater and lesser Green functions as building blocks
to define a unified Green function on the whole complex time plane. By taking different
contours, we are able to express all Green functions of time as different faces of the same
entity. Similarly, we use the retarded and advanced Green functions to define the Green
function in the complex frequency plane, and relate all Green functions of frequency to it.
We systemically show how to move from the time domain to the frequency domain and
back. Our presentation shows a nice duality between Green functions in the two domains.
We similarly discuss the analytic structure of correlation functions and their relations.
We then derive the spectral densities of Green and correlation functions and show that
they form positive-definite matrices. This implies that their diagonal elements are non-
negative functions in all different bases. Obtaining these diagonal spectral functions
from QMC data is the analytic continuation problem we set out to solve.

In chapter 2, we study this problem as a Fredholm integral equation of the first
kind. Discretizing the integral on a grid gives us a finite-dimensional linear system.
We show that the ill-posedness comes from the exponentially decaying singular values
of the resulting kernel matrix. We use the ill-posedness to our advantage and provide
a simple formula for estimating the noise level on the data using its SVD expansion
coefficients. We then discuss a few regularization methods like truncated SVD and
Tikhonov regularization. We explain the non-negative least squares (NNLS) method
and suggest a modification that improves its convergence rate. We demonstrate how
non-negativity constraints alone act as an important regularization. We also develop
a new regularization method, the perturbed data sampling (PDS), that averages over
different NNLS solutions using data with artificially added noise. We use PDS later as
a good initialization for the stochastic sampling methods.

In chapter 3, we introduce Bayesian inference and show how different methods like
MaxEnt, Tikhonov, and NNLS can be expressed within this framework. We then define
StochS as a Bayesian method with a flat prior and a mean estimator. We develop blocked
modes sampling (BMS), an efficient stochastic sampling algorithm that utilizes the SVD
of blocks of the kernel matrix. Having a flat prior, one would assume the StochS results
to be unbiased. Surprisingly, we find that the discretization grid acts as an implicit
default model affecting the results. We explain this effect by showing that a flat prior
on the grid implies a gamma prior on other grids. By including this prior explicitly, we
simulate the results of one grid using others. We also relate StochS to gamma stochastic
processes where the flat prior arises naturally from projecting such a process on a specific
grid. Faced with the grid dependence, we provide two heuristics for determining when
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a grid is reliable: fit histograms and grid size dependence.

We then develop gridless stochastic sampling (gStochS) by drawing the grid points
independently from a prior density function which acts as an explicit default model.
Sampling over grid points incurs an additional computational cost, but reduces the
effect of the default model dramatically. For some test cases, however, the results are
still sensitive to the width of the default model. So we extend the method further into
eStochS, by averaging over different widths. For typical densities, we can perform the
width average analytically and get eStochS at basically no extra cost in comparison to
gStochS. In most cases, eStochS is able to find the proper width without the need for a
recipe. In cases where it fails, we can identify this failure from the fit histograms and
the grid size dependence, and find a better estimate by varying the width by hand. An
example is given in chapter 4, where we test our approach using real data from DMFT
and lattice QMC calculations.

In eStochS, we use a default model that is concentrated around zero with varying
width. We could try to extend the method one more time by using a multi-peak structure
with varying centers and widths. But even then, one can construct test cases where
further extensions are needed. In principle, this is a never-ending process because there is
an infinite number of possible parameters. The more flexible the default model becomes,
the less biased the results are, but the harder the sampling gets. In practice, we have to
identify the most relevant parameters and stop at a point that achieves a balance between
performance and efficiency. Moreover, the choice of the prior over these parameters is not
unique, and we should always consult our heuristics to check whether our assumptions
are consistent with the data.

Besides the possibility of extending the prior, there are still two open questions in
stochastic sampling. The first is extending the approach to the analytic continuation
of non-diagonal elements. As discussed earlier, the spectral functions form a positive-
semidefinite matrix, i.e., for each frequency z, the set of functions f; ;(x) form a hermitian
matrix with non-negative eigenvalues. One approach to sample these functions is updat-
ing individual elements f; ;(x) of the positive-semidefinite matrix directly (alongside the
transpose f7,(r) = fi () to preserve hermiticity). We can show that positive-definiteness
can be preserved by restricting the updated values to bounded intervals. Computing the
bounds efficiently is, however, not trivial. Also it is not clear whether the updates al-
lowed by these bounds would be large enough for efficient sampling. Another approach
is writing the sampled functions in terms of frequency-dependent eigenvalues A(x) and
frequency-dependent eigenvectors v(x)

fii(@) = vig(@)A(@)ve;(x) -

The eigenvalues should be non-negative and the eigenvectors should form a unitary
transformation. We already know how to sample non-negative functions and thus we
only need to extend the algorithm to sampling unitary transformation matrices.

The second open problem is quantifying the uncertainty in the stochastic sampling
result. So far we used only the mean of the posterior as the final estimate, implic-
itly assuming that uncertainty in the positions of the features should be reflected by

158



smoothening of these features to the extent of the uncertainty. Nevertheless, we should
remember that the mean is just one model while the Bayesian framework provides us
with the probability of every possible model and thus the uncertainty in our estimate.
Since the sampled models are evaluated on a binning grid and averaged, this uncertainty
can be summarized in the covariance matrix of the bin values (these intrinsic variances
should not be confused with the statistical errors in computing the average, although the
two are proportional). The problem is that the variances of typical bins are extremely
large to the extent of being useless. This should not come as a surprise because the
bins are usually narrow, and neither the data nor the prior provide information about
such fine details of the model. In order to get useful information, we need to reduce the
variances of the bins by increasing their sizes. Think of it as a trade-off between vertical
uncertainty (variance) vs. horizontal uncertainty (bin size). We developed an algorithm
to find the optimal trade-off and the preliminary results are promising. It starts with
one large bin and recursively splits the bins such that only statistically significant fea-
tures (i.e. features with high posterior probability) are resolved. The downside is that
the resulting binning is often too coarse to be visually appealing. More work in this
direction needs to be done.

To conclude, we have developed a hierarchy of stochastic sampling methods. They
share their flat prior over non-negative model integrals F and differ by their prior over
grid points x. Each new method is extending the preceding one by averaging over the
most relevant parameters of its grid prior. Our hierarchal approach to priors alongside
with the diagnostic tools of fit histograms and grid size dependence, provides not only a
set of promising analytic continuation methods, but more generally, a framework for the
systematic development of even more complex and reliable stochastic sampling methods
that can be tailored to the different challenges in analytic continuation.

...... /dw /de(x;w)/ dF ¢ X" (Fx)/2 f(z; F,x)
F>0

S

\ StochS B

gStochS
) eStochS ,

A
Jm TOBe Co
___________ }ZZKZ’
L,
N‘\\\\ eq‘
Re

159






A. Prior Stochastic Processes

Analytic continuation boils down mathematically to estimating a density-like function
f(z). In order to apply Bayesian inference to the analytic continuation problem, we
need to assign prior probabilities to the space of these density-like functions. Defining
a probability measure, known as a stochastic process, on such infinite-dimensional
spaces is a complicated subject that requires a measure-theoretic treatment of proba-
bility. We will discuss the admissible priors in familiar terms sacrificing mathematical
rigorousness for readability. Our approach follows closely [37]. We will also relate the
different methods to their stochastic processes giving a framework to understand StochS,
MaxEnt and Beach [31] methods on the same footing.

A.1. General construction of admissible processes

The basic idea is that one can define a stochastic process on an infinite-dimensional
space by specifying all finite-dimensional probability distributions in a ”consistent” way.
We will construct a family of finite-dimensional representations of f(z) and specify the
consistency condition that should by satisfied by the corresponding distributions. Let €2
be the domain over which the function f(z) is defined with end points a and b. Using a
grid of points m = {z, .., ¥, } such that

a=20 <11 <T9<..<xp,=0b,
we partition €2 into n subintervals
Zi={reQ:x_ <z <ux},

and define the integrals of f(x) over these subintervals as

F; = / de f(z) .
The n-dimensional vector F, = [F}, ..., F},] then provides a finite-dimensional represen-
tation® of the function f(x) on the specified grid 7. If I is the set of all possible girds,
then we get F = {F, : 7 € II} a family of all finite-dimensional representations of f(x).

"'We could have used instead the average values f; = F;/(x;11 — x;). However, the function f(x)
has a finite integral, so its average value over an infinite interval (like the last interval for = R) is
zero, which leads to a loss of information on that interval when using the average. Moreover, specifying
the consistency condition is much easier using the integrals than averages.
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Figure A.1.: Schematic drawing of some grid m and some coarsening of it 7’.

We can now specify a probability distribution P, for each F, and form a family of
all finite-dimensional distributions P = {P, : m € II}. This family of finite dimensional
distributions determines uniquely a stochastic process on the infinite-dimensional space
of f(x). Knowing that f(x) is non-negative with a finite integral implies that F, should
also be non-negative and finite. Therefore, any probability distribution on the space of
finite non-negative vectors is admissible. However, once this distribution is specified on
a certain grid, the admissible probability distributions on other grids are restricted by
the following consistency condition.

Let m = {xo,...,z,} be some grid with probability distribution P, and let the grid
' = {xy,...,2),} be some coarsening of this grid (see Fig. A.1). The intervals of 7’ can
be seen as merging of the intervals of 7

!/ !
i=Jz . .. C T,=U 7T,
1€81 1€ESm

where sy, ..., s, are index sets of the merged intervals. Moreover, the integral of f(x) over
the coarse intervals is the sum of the the integrals over the corresponding fine intervals

Fl=>F , .. . FL,=)_F.
1€51 1€ESm

We know that when p(z,y) is a joint probability distribution of two random vari-
ables x and y, then their sum z := x + y has the probability distribution ¢(z) =
[ dzdy p(z,y)d(z — x —y). We can generalize this to obtain the probability distribution
on the coarse grid P, from the probability distribution on the fine one P, as

P (F,...,F)
:/dF1 o dF, PRy, F) §(F =Y F)..0F,-) F).

1E€S81 1€ESm

(A.1)

Therefore, the probability distribution on some grid completely determines the probabil-
ity distribution on any coarser grid by the above relation and the probability distribution
on any finer grid is restricted such that it satisfies the above relation. This same idea was
used to derive the priors implicitly assumed by StochS on different grids (see Sec. 3.3.3).
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A.2. Examples of prior processes

To sum up, a family P of probability distribution on all possible grids defines an
admissible prior process for density-like functions f(z) if:

1. Each probability distribution P, € P has support only on finite non-negative
vectors.

2. The consistency condition (A.1) is satisfied for any two distributions P,, P, € P,
whenever grid 7’ is a coarsening of grid .

Remark. The family of probability distributions need not be defined on all possible grids
from the outset. It is sufficient to be defined on a rich enough set of grids that can be
used to generate all possible grids. For example, suppose 2 = [0, 1], then the set of dyadic
grids {0, 3,1}, {0, %, %, %, 1}, ...., etc. can used to generate all possible grids because any
real number can be arbitrarily closely approximated by dyadic rationals of the form i/2",
where 1 is an integer and n is a natural number. Indeed, this is how the so-called dyadic
tailfree process is defined [38, Sec. 1.10] and there are many other processes which
are initially defined on such a set of grids and then extended naturally to all possible

grids.

A.2. Examples of prior processes

A.2.1. Gamma process

The gamma process is one of the simplest admissible processes. As the name suggests,
it uses the gamma distribution, so we discuss it briefly first. The gamma distribution
is a univariate distribution with two parameters, a shape parameter o > 0 and a rate
parameter S > 0, and it is supported on the positive real axis. It has the following
probability density function

/Ba xa—l e—mﬂ
[(c)

where I'(¢) is the gamma function, and the following mean and variance

plz; o, B) = for x>0, (A.2)

P )
R

Note that when o = 1, we get back the familiar exponential distribution. Fig. A.2 shows
the gamma distribution for different shape and rate values.

The gamma distribution has an important summation property that the sum of inde-
pendent gamma random variables with the same rate parameter is also a gamma random
variable

(A.3)

X; ~ Gamma(a;, 5) = ZXi ~ Gamma <Z 0@6) : (A.4)

This property was proven for a simple case in Sec. 3.3.3 and used to simulate one StochS
grid on another.
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Figure A.2.: The probability density function of a gamma random variable for different
values of shape parameter o and rate parameter [3.

The gamma process has three parameters: (1) a positive real number A, called the
rate parameter, (2) a positive real number «, called the concentration parameter, and
(3) a normalized positive function D defined on the domain €, called the default model.
This process is defined such that Fj, the integral of f(x) over any interval Z; is a gamma
random variable

F; ~ Gamma (a /I | dx D(x), A) . (A.5)

Moreover, whenever the intervals Z; and Z; are disjoint, the random variables F; and
F; are independent. This definition satisfies the conditions for an admissible process.
First, the samples are finite and non-negative. Second, due to the summation property
of gamma variables, the distribution over fine intervals is consistent with the distribution
over coarser ones. For example, let the integral over an interval Z be F'. Its distribution
assigned from the outset is consistent with the distribution resulting from summing the
integrals F; and F} over any two subintervals Z; and Z; forming a partitioning of Z

I

Gamma (a/ dx D(z), )\> =
Zl‘UZj

Gamma (a/dm D(x), )\) .
z

Relation to StochS Interestingly, each gamma process has a special grid where the
distributions of F; simplify to exponential distributions. We get this grid by dividing the

F = F;, + F; ~Gamma (a/ dx D(:E)+a/ dzx D(zx), )\> =
Z
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A.2. Examples of prior processes

domain €2 into n intervals such that the integrals of the default model over these intervals
are equal. Since the default model has unit integral, we have [, do D(x) = 1/n, and
choosing n = « gives us the following distribution

F; ~ Gamma(n %, A) = F, ~Exp()).
Taking the zero limit of the rate parameter A\ — 0, the exponential distribution ap-
proaches a uniform distribution over all non-negative values which is nothing but the
prior used by StochS! Therefore, applying StochS on a grid with n points and whose
density is p(z) corresponds to using a gamma prior process with a default model D(z) =
p(x), a concentration parameter « = n and zero rate parameter A = 0.

A.2.2. Dirichlet process

The Dirichlet process is directly related to the gamma process and it is just a normal-
ization of it. Let f(z) be random functions drawn using the gamma process, then the
normalized functions f(z)/ [, dx f(z) follow the Dirichlet process. Therefore, the Dirich-
let process can be used as a prior when we know that the function should be normalized
like in the analytic continuation of Green functions.

As we will show later, the Dirichlet process can also be defined directly using the
Dirichlet distribution. This a multivariate distribution defined on the unit simplex? and
parametrized by a vector of positive real numbers a. It has the following probability
density function

P(T1, ey Ty Qe ) = W T (A.6)

and the following mean and variance

0% 2 Oéi(Oéo - Oéi)
=t 2= Y AT
ILL’L O[O’ 7 Oég(ao + 1) 3 ( )
where ap = >, ;. Note that when a; = ... = a;,, = 1, we get a uniform distribution

over the simplex. Fig. A.3 shows several Dirichlet distributions for n = 3.
Similar to the relation between the processes, the Dirichlet distribution can be ob-
tained by normalizing n independent gamma distributions as following;:

y1 ~ Gamma(ay, 5), ..., Yyn ~ Gamma(ay, [3) (A.8)
Y1 Yn .

= eees ~ Dir(aq, ..., ) , A9

E:@ Yi > :7, Yi (s ) (A.9)

Note that the parameters of the resulting Dirichlet distribution are independent of the
rate parameter 3. The summation property (A.4) of the gamma distribution translates

2Tt the set of vectors whose components are non-negative and sum up to one
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A. Prior Stochastic Processes
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Figure A.3.: The probability density function of the Dirichlet distribution on the unit
simplex of R3. Note that when a = [, a, @], the distribution is symmetric
around the middle of the simplex. For a = 1, we get the uniform distribu-
tion (case a). For av < 1, the density is concentrated at the vertices (case
b), while for a > 1, it is concentrated in the middle.

into the following aggregation property of the Dirichlet distribution:

Ty ooy Ty ~ Dir(ag, ..., o) (A.10)
= Ty, ey Ty Ly ey Ty~ Dir(o, oy 0 + 0y o, i) (A.11)

where the new distribution has n — 1 parameters.

The Dirichlet process has two parameters: (1) a positive real number «, called
the concentration parameter, and (2) a normalized positive function D defined on the
domain €2, called the default model. This process is defined such that F,, the integrals
of f(x) over grid 7, follow the Dirichlet distribution

F, =[F, .., F,] ~ Dir (a/I dz D(z), ..., a/ dx D(a:)) . (A.12)

n

This process is admissible because the samples are non-negative and finite and the consis-
tency condition is satisfied due to the aggregation property of the Dirichlet distribution.
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A.2. Examples of prior processes
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k

Figure A.4.: The probability mass function of a Poisson random variable for different
rate parameters A. Note that this function is defined only over non-negative
integers.

Note that the samples of the Dirichlet process are always normalized. This is why it
does not have a rate parameter like the gamma process. This parameter is canceled
when the gamma process is normalized into a Dirichlet process.

Relation to StochS Similar to the gamma process, the Dirichlet process has a special
grid where the finite-dimensional distribution becomes uniform. This grid is obtained
by dividing the domain into « intervals where the integrals of the default model D over
the intervals are equal. This uniform prior over normalized vectors is the prior used by
StochS when a sum rule is imposed.

A.2.3. Poisson process

Another interesting process is the Poisson process. This process gives quantized functions
whose integrals are multiples of a specific quantum ¢. It uses the Poisson distribution
to describe the number of quanta in each interval. The Poisson distribution is a discrete
distribution with the following probability mass function

Aee=A
K

where A is called the rate parameter and controls both the mean and variance of this
distribution p = o = A. Similar to the gamma distribution, the Poisson distribution has
the following summation property

k; ~ Poisson()\;) = Z k; ~ Poisson (Z /\i> i

P(k; \) = (A.13)
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Figure A.5.: The probability mass function of a binomial random variable for different
parameters. Note that parameters A, A, sum up to one and variables k1, ko
sum up to K.

In Fig. A.4, we show the Poisson distribution for different rate parameters.

The Poisson process has three parameters: (1) a positive real number ¢ called the
quantum, (2) a positive real number « called the concentration parameter, and (3) a
normalized positive function D defined over the domain €2, called the default model.
This process is defined such that the number of quanta k; in any interval Z; is following
a Poisson distribution

F; =kiq where Fk; ~ Poisson (a/ dx D(x)) . (A.14)
Z

Besides, k; is independent of k;, the number of quanta in any other non-overlapping
interval Z;. As for the gamma process, the consistency of this definition follows from
the summation property of Poisson random variables.

A.2.4. Multinomial process

The multinomial process is defined in terms of the multinomial distribution. It is a
multivariate discrete distribution parameterized by a positive integer K and a vector of
positive real numbers A that sum up to one. It is defined on the set of non-negative
integers that sum up to K and has the following probability mass function

K
P(ky, ook KoM o M) = WA’;l...Aﬁn . (A.15)
IREERL7 R

Its mean and variance read

=KX\ of =KX\N(1-N\). (A.16)
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A.2. Examples of prior processes

In Fig. A.5, we show the multinomial distribution for n = 2 (also known as the binomial
distribution) and different parameters.

The multinomial distribution can be obtained from n independent Poisson random
variables k; by imposing a restriction on their sum ), k; = K ie. conditioning in-
dependent Poisson random variables on their sum gives a multinomial distribution as
following

ki ~ Poisson(A1), ..., k, ~ Poisson(\,)
= hery e K~ Mult(E, N, o MY

where A} = A;/ > Aj. As a result, imposing a normalization constraint on the Poisson
process translates into a restriction on the total number of quanta to 1/¢ and leads to
the Multinomial process defined below.

The multinomial process has two parameters: (1) a positive integer K called the
number of quanta, and (2) a normalized positive function D defined on the domain €2,
called the default model. This process is defined such that the integrals of f(z) over grid
7 takes the form F, = ¢[ky, ..., k], with ¢ = 1/K and ky, ..., k, following the multinomial
distribution

ki, ..., ky ~ Multi (K,/ dx D(x), ..., / dx D(x)) . (A.17)
Zl n

Relation to MaxEnt The multinomial process is important due to its relation to the
MaxEnt method. Let us look at the logarithm of a multinomial probability

I P(ky, k) =K1 = "Inkl + ) ki)

In the limit of very large K, we can use the Sirling’s formula Inz! ~ zlnz — x to get
the following approximation

lnP(kl,...,k)NKan—K—Z (kilnk; — +Zkln)\

_Zk InK — Zk In k; +Zk In\;

K)\i'

For a multinomial process on a grid m, we have \; = fL_ dx D(z) and k; = F;/q = KF;
so the probability distribution of the integrals F; = fz- dz f(z) reads

P(Fy,...,F,) ~ S (limit of K — oo) (A.18)

7, dz f(z)
S(Fy, ... ZFlnf de Z/ dr f(z d—mx)' (A.19)
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For a fine enough grid, a function can be approximated by its average values on the grid
intervals, so the exponent can be written as

S~ — /Q dz f(z)ln é@ . (limit of n — o0) (A.20)

which is easily recognizable as the entropy of the function f(z) relative to the default
model D(z). To summarize, we can say that the finite-dimensional distribution on a
fine grid of a multinomial process with a large number of quanta can be approximated
with the prior

P(f) = &S50 (A.21)

A clear problem with this approximation is that it is only valid in the limit K — oo,
where the prior becomes extremely sharp around the default model suppressing any
knowledge from the data [39]. To be more explicit, assuming Gaussian-distributed data
with x(f) representing the fit to the data g, the posterior distribution has the following
form

P(flg) o< "SI (A.22)

As K increases to infinity, the entropy term becomes infinitely large in comparison to the
fit term. A workaround this infinitely sharp prior is to make the data also ”artifcially”
sharp by introducing a parameter 3 into the fit term and taking the limit § — oco. The
trick to get a meaningful result is keeping the ratio o := K/ fixed

P(f|g) o eXSN=BxWN/2 = oBlas(H—x*(H/2)] (A.23)

Since the exponent goes to infinity, the mean of this distribution is the same as its max-
imum which is nothing but the MaxEnt solution. To conclude, we identify the MaxEnt
solution as a solution using a multinomial prior process in the limit of infinite number
of quanta. In this limit, the prior is infinitely sharp, so the data is also made infinitely
sharp keeping the ratio of the two fixed. When the functions are not normalized, the
above argument can be repeated to show that MaxEnt with the generalized entropy

S = /Q dz f(z) — D(z) — f(z)In é@ (A.24)

is similarly related to the Poisson process [39].

Is MaxEnt Bayesian? Using the entropy prior e**¢) on any specific grid is clearly
valid. The problem is that moving to a coarser grid gives us generally a distribution
that cannot be expressed as an entropy prior [39]. Therefore, the consistency condition
(A.1) cannot be satisfied and the entropy prior is not admissible. Even in the previous
paragraph where the entropy prior arises as the limit of the admissible multinomial or
Poisson processes, it is valid only on very fine grids. More importantly, the data (i.e.
the likelihood) has to be made infinitely sharp to get meaningful results, which is not
justified in the Bayesian framework. This inconsistency of MaxEnt was missed earlier
due to the side effects of a Gaussain approximation used in the algorithm. Nevertheless,
it can be still seen and used as a powerful regularization method [26].
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A.3. Discrete representation

Comments on Beach'’s identification of MaxEnt In his paper [31], Beach identifies
MaxEnt as a limit of stochastic analytic continuation. Taking Beach’s identification at
face value, it looks different from our identification, but they are actually the same.
Beach argues in physical terms, while we argue in mathematical ones. He talks about a
system of interacting classical fields at a fictitious temperature and treats the fit to that
data as the energy. To make the connection to multinomial processes, think of these
classical fields as the distribution of K classical particles over n energy levels where
both K and n go to infinity. Then the multinomial distribution arises naturally as the
number of ways of distributing K classical particles into n energy levels. The parallel
of the ”artificially” sharp data assumption is the average energy constraint implied by
the fixed temperature. Finally, using the mean field solution corresponds to using the
saddle point solution. This is similar to what we did by taking the maximum as a
representative of the mean. It is worth pointing that Beach presents MaxEnt as a limit
of "the” stochastic analytic continuation, failing to recognize that there are different
stochastic methods corresponding to different priors and that his identification works
only for the multinomial prior.®> Moreover, he discusses two stochastic methods, none of
which has the multinomial prior! The first one is Sandvik’s original method [4] which
is equivalent to StochS and has the gamma prior (or the Dirichlet prior for normalized
models). The second one is a method suggested by Beach himself. We will show later
in Sec. A.3.1 that Beach’s method (which is equivalent to gStochS) corresponds to an
extended form of the multinomial process.

A.3. Discrete representation

An important subclass of processes? is discrete processes where the sampled function
f(z) can be represented as a countable sum of delta functions

flz) = Zwi oz — ;) , (A.25)

where K, w; and x; are random or deterministic variables. As surprising as it may seem,
all the four prior processes discussed earlier are actually discrete ones.

For example, fixing the number of deltas to K and setting w; = ¢ = 1/K, while
drawing the positions x; identically and independently from a probability distribution
D(z) gives us the multinomial process. This is easy to understand by realizing that for
any finite grid, the number of delta functions falling in the grid intervals must follow the
multinomial distribution of Eq. A.17. Since the weights of the delta functions are fixed,
the family F, the integrals of f(x) on finite girds 7, forms a multinomial process.

For the Dirichlet process, the positions x; are also drawn identically and independently
from the default model D(x). However, the number of delta functions is infinite K = oo

3He assumes an integration measure over normalized positive functions without realizing that such
a measure is not unique.

4Not all admissible processes are discrete. For example, Polya tree process generates continuous
samples. However, all the processes we are interested in are discrete.
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Figure A.6.: The probability density function of beta distribution Beta(1, ) for different
values of a.

and the weights are defined as w; = f; H;ll(l —f3;) where random variables (3; are drawn
interdependently and identically from the beta distribution Beta(1,a) (see Fig. A.6).
You can imagine generating the weights as taking a stick of length one and breaking it
at B1. The length of the first piece (3 is taken to be the first weight w;. Then we take
the other piece (whose length is 1 — 1) and break it at Oy of its length to obtain two
pieces. The length of the first (1 — 51)5; is used as the second weight ws while the other
piece is broken recursively to obtain the other weights ws, wy, ..., etc. This is called the
stick-breaking construction of a Dirichlet process and it can be shown to be equivalent
to the earlier definition [40]. Using this construction in practice, requires approximating
the Dirichlet samples using a finite number of delta functions K. Fig. A.7 shows the
concentration parameter o versus the average number of delta functions required to
cover 99% of the total weight of a Dirichlet process sample. Notice that the relation is
linear: K &~ 4 «a. A discrete representation of the gamma process is more complicated
and can be found in [41].

A.3.1. Discrete exponential process

As we have seen, the multinomial process has a fixed number K of delta functions
whose weights are fixed to w; = 1/K and whose positions are drawn identically and
independently from a default model D(x)

fl@) =3 wi oo — ).

where: w; =1/K
iid

z; ~ D(z) .
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Figure A.7.: The number of delta functions required using stick-breaking construction
to get 99% of the total weight of a Dirichlet process with concentration
parameter «. Since this number is not deterministic, we plotted the mean
with its standard deviation as an error bar.

We can extend this process by varying not only the positions but also the weights. The
most straightforward way to vary the weights is to draw them identically and inde-
pendently from an exponential distribution Exp(A). This choice is one of the simplest
distributions over non-negative values and it allows us to get a flat distribution over
non-negative values by taking the limit A — 0 later.® The positions z; are drawn as
always identically and independently from a default model D(z).

To put this process on equal footing with earlier processes and to illustrate how one
can move from the discrete representation to the grid representation, we will derive the
finite-dimensional distribution of the integrals F, on any grid n. For simplicity, we
focus first on a single grid interval Z. Assuming that F is the integral of f(x) over Z,
we want the probability distribution of F' denoted as Pr(F'). Since F' equals the sum of
the weights of delta functions falling in Z

the desired probability equals the sum over all ways that delta functions can fall in Z
such that the sum of their weights equal F

Pr(F) =Y _C(l)xpi(l) * pa(l) |

=0

5Taking this limit is only sensible after forming the posterior where the data would determine the
total weight.
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where C' is the number of ways of choosing [ delta functions out of K ones, p; is the
probability that [ delta functions are in Z and ps is the probability that the sum of their
weights equals F'.

The number C' is simply the binomial coefficient

cay:(7>.

The probability that a delta function falls in Z is

:émpm.

Therefore, the probability of exactly [ delta functions falling in 7 reads

p(l) =¢' (1 -,

Finally, the probability that the sum of [ weights equals F' reads

1 Ez i 1 _EFl_l
N dwy...dw; e (Zwl ) :—e b) OB

This formula works only for [ > 0, because when no delta function falls inside the interval
Z, the integral is zero with probability one. So we have

o o =0
P /\le‘w% 0<I<K’

Putting things together, we get

Flfl
Pr(F 1—q)% "1 =) Ne M —— A2

Extending this result to a grid of two intervals is straightforward. Let us re-denote
l,q and F' from above as ki, D; and Fj, respectively. Besides, denote the number of
delta functions in the complement interval of Z as ks, the integral of D(z) over it as D,
and the integral of f(x) as F,. The joint probability density of F; and F5 can then be
written as

Dle ko
F17F2 Z 5k’1+k2K 2

k1 k2 =0 F k!
S0 (F1) + (1 — Bp0) AP T (A.27)
k1,0 1 k1,0 F(kl)
k A F2’§2_1
E 1— 272 )
[51@70 O(Fy) + (1 — Opy0) A2 () }
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A.3. Discrete representation

This can be generalized easily to the n-dimensional case

K DM Dkn
Pr(Fy, oy Fo) = ) 521,,%[(]{—1' -
K1y kn=0 1 n
it A28
{5’61 0 0(F1) + (1 = 6g, 0) NMe M — 1 | A
’ ’ ['(k1)

Fln—1
. kn ,—AFn_n
..... [(Skn,o 0(Fn) + (L = Ok, 0) A7e ['(ky) }

It is important to note, that although we are able to derive the distribution on a grid,
it is still far more efficient to draw samples and perform averaging using the discrete
representation, as done in the algorithm of gStochS.

To get normalized functions from the previous process, we can impose normalization
on the total weight and take the limit A\ — 0. This allows the weights to vary uniformly
while summing up to one, which is equivalent to drawing them from the flat Dirichlet
distribution Dir(1,1,...,1)% The finite-dimensional distribution of integrals on a grid
can be derived similar to the previous process. We only need to impose normalization
and recalculate the probability that the sum of [ weights equals F. The probability
distribution of the weights is Dir(1, 1, ..., 1), so the probability distribution of the sum of
[ weights, using the aggregation property of Dirichlet distribution, is Dir(l, K —[) which
reads

I'(K)

T(I) T(K —1) FEA- R

and we get the following distribution of integrals on a grid with n intervals

K Dllﬁ DFkn
Pr(Fy,..,F,) =90 ZFFI TE)K! Y Ok Py
i Rty kin =0 . (A29)
Flklfl Fkn—l
[5,%0 O(F1) + (1 — 0k, 0) 06 } {5;%0 (Fn) + (1 — dk,.0) FT(Lkn)

Relation to Beach’s method From the discrete representation, it is easy to see that
this process corresponds to the method suggested by Beach (without parallel temper-
ing) [31]. We should point out that Beach does not consider the number of delta functions
as a parameter. Instead, he assumes that he is approximating an integration measure
and that the more delta functions, the better the approximation. However, this assump-
tion is not valid, because it can be shown [43] that in the limit of K" — oo, this process
(or integration measure) becomes concentrated at the default model D(z), suppressing
any knowledge from the data.

6Tt is worth noting that using the distribution Dir(a/K, a/K, ...,a/K) with K — oo instead of the
flat one gives the Dirichlet process [42].
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A. Prior Stochastic Processes

Relation to gStochS and eStochS Since gStochS with delta functions mapping is
technically equivalent to Beach’s method, the discrete exponential process is also the
stochastic process of gStochS where the grid size equals the number of delta functions n
and the default model D(x) equals the prior density p(x). It is also the stochastic process
of eStochS if we redefine the probability of a delta function falling in the interval Z; as
D; = [dw [ dxD(x;w); this accounts for the averaging over the width of the default
model. Using mappings other than delta functions, would lead to different but similar
stochastic processes. The principle for deriving these process is, however, the same.
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B. Analytic Continuation of
Non-Diagonal Spectral Functions

Assuming we have an algorithm for the analytic continuation of diagonal elements only.
Could we use it to reconstruct non-diagonal elements? To answer this question, let us
take a 2 x 2 spectral matrix of fermionic Green functions

Aw) = {ﬁjﬁ% 2281

We can transform this matrix using a unitary transformation U to get another matrix
Aw)=UA(w)U .

Since the matrices A, A are Hermitian, the only non-diagonal element we need to cal-
culate is the upper triangular one A, 5, which is completely determined by the diagonal
elements Ajp, Agy, A1, Ase. So, the non-diagonal elements of a 2 X 2 matrix can be
calculated using its diagonal elements in two different bases.

Now Suppose we have a 3 x 3 matrix

An(w) Alg(u]) Alg(u})
Aw) = |Al(w) An(w) Axp(w)
Afz(w)  Azy(w)  Ass(w)

To calculate A5, A3 and Aoz, we apply the above idea to each of the following sub-
matrices, respectively

) aeel [ Al [z e

In general, the non-diagonal elements of higher dimensional matrices are determined by
the diagonal elements of the 2 x 2 sub-matrices containing those elements in two different
bases.

So far we have demonstrated that it is possible in principle to reconstruct the whole
spectral matrix using only diagonal elements in different bases. If those diagonal ele-
ments were constructed out of exact Green functions without noise or numerical errors,
the reconstructed matrix will be positive semidefinite since all spectral matrices are pos-
itive semidefinite. However, the Green function data is incomplete and has noise, so
we may ask the following question: is it enough to impose the non-negativity of the
analytically continued diagonal elements to ensure the positive semidefinite nature of
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B. Analytic Continuation of Non-Diagonal Spectral Functions

the reconstructed matrix? The answer is NO! We will demonstrate this by showing that
a 2 x 2 matrix could have positive diagonal elements in two different bases (even in
infinitely many bases) and still not be positive semidefinite. As a result, imposing the
non-negativity of diagonal elements in a finite number of bases cannot guarantee the
positive semi-definiteness of the spectral matrix.

Let us consider the following matrix

where € is a very small positive number. This matrix is clearly not positive semidefinite
because it has a negative eigenvalue —e. Now let us rotate this matrix by an angle
using the transformation

_ |cos(f) —sin(h)
u©) = [sin(@) cos(6)

The transformed matrix reads

M(0) = U'(6)AU(6) { cos?(0) — esin?(#)  — cos(6) sin(0)(1 + e)]

—cos(0)sin(0)(1+¢€)  sin?(0) — ecos®(0)

Let us take two transformations for different angles #; = 45° and 6, = 30°

M(6,) = % [_%1_4:6) —%1_+:>]
M(6) = [_jg(_lie) ) :f(_lfe)]

Both of these matrices have positive diagonal elements and they are related by a rotation
of 6; — 0y = 15°. Nevertheless, they are not positive semidefinite. Therefore, imposing
non-negativity of diagonal elements in two different bases is not sufficient to guarantee
the positive semi-definiteness of the matrix.

There are actually an infinite number of bases where the above matrix can have
non-negative diagonal elements. These bases are rotated by any angle that satisfy the
following conditions

cos?(#) — esin®(0) > 0 = cos*(0) >

N AN ™

sin?(#) — ecos(0) > 0 = sin?*(0) >

In Fig. B.1 we show on the unit circle, the angles 6 for which the matrix M(f) has
non-negative diagonal elements. Therefore, a matrix could have non-negative diagonal
elements in an infinite number of basis but still not be positive semidefinite.
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sin(9) A

Figure B.1.: The shaded sectors of unite circle correspond to angles 6 for which the
matrix M(€) has non-negative diagonal elements.

Topology of positive semi-definite matrices

It is easy to show that the sum of positive semi-definite matrices is also a positive semi-
definite matrix. A Hermitian matrix M is positive semi-definite if and only if z7Mz > 0
for any vector z. Let A and B be two positive semi-definite matrices, then they are
Hermitian and satisfy 27 Az > 0 and 27Bz > 0, respectively. Their sum A + B is
then also Hermitian and satisfies 27 (A + B)z > 0. Therefore, the sum is positive semi-
definite.

Moreover, let A € [0, 1], then

A+ (1 =NB]z=X"Az+ (1-1)2"B2>0

Therefore, AA + (1 — \)B is positive semi-definite, and positive semi-definite matrices
form a convex set.

These two results are important for extending StochS to spectral matrices. The first
one ensures that the average result is a positive definite matrix. The second one allows
us to sample the space of positive definite matrices by varying one matrix element at a
time and ensures that the allowed values for this element is a connected interval.

Note The Green function has diagonal structure for all values iff the spectral function
has diagonal structure for all values. The idea of simultaneously diagonalizing spectral
matrices for all w does not work in general because in general we cannot find a single
transformation that simultaneously diagonalize the spectral matrices of all w.
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