000840317 001__ 840317
000840317 005__ 20230217124401.0
000840317 0247_ $$2doi$$a10.1103/PhysRevE.91.042904
000840317 0247_ $$2ISSN$$a1063-651X
000840317 0247_ $$2ISSN$$a1095-3787
000840317 0247_ $$2ISSN$$a1539-3755
000840317 0247_ $$2ISSN$$a1550-2376
000840317 0247_ $$2ISSN$$a2470-0045
000840317 0247_ $$2ISSN$$a2470-0053
000840317 0247_ $$2Handle$$a2128/16005
000840317 0247_ $$2pmid$$apmid:25974559
000840317 0247_ $$2WOS$$aWOS:000352471700005
000840317 0247_ $$2altmetric$$aaltmetric:3090800
000840317 037__ $$aFZJ-2017-07859
000840317 082__ $$a530
000840317 1001_ $$0P:(DE-Juel1)164577$$aManos, Thanos$$b0$$eCorresponding author$$ufzj
000840317 245__ $$aStatistical properties of the localization measure in a finite-dimensional model of the quantum kicked rotator
000840317 260__ $$aWoodbury, NY$$bInst.$$c2015
000840317 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2015-04-09
000840317 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2015-04-01
000840317 3367_ $$2DRIVER$$aarticle
000840317 3367_ $$2DataCite$$aOutput Types/Journal article
000840317 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511948600_9735
000840317 3367_ $$2BibTeX$$aARTICLE
000840317 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840317 3367_ $$00$$2EndNote$$aJournal Article
000840317 520__ $$aWe study the quantum kicked rotator in the classically fully chaotic regime K=10 and for various values of the quantum parameter k using Izrailev's N-dimensional model for various N≤3000, which in the limit N→∞ tends to the exact quantized kicked rotator. By numerically calculating the eigenfunctions in the basis of the angular momentum we find that the localization length L for fixed parameter values has a certain distribution; in fact, its inverse is Gaussian distributed, in analogy and in connection with the distribution of finite time Lyapunov exponents of Hamilton systems. However, unlike the case of the finite time Lyapunov exponents, this distribution is found to be independent of N and thus survives the limit N=∞. This is different from the tight-binding model of Anderson localization. The reason is that the finite bandwidth approximation of the underlying Hamilton dynamical system in the Shepelyansky picture [Phys. Rev. Lett. 56, 677 (1986)] does not apply rigorously. This observation explains the strong fluctuations in the scaling laws of the kicked rotator, such as the entropy localization measure as a function of the scaling parameter Λ=L/N, where L is the theoretical value of the localization length in the semiclassical approximation. These results call for a more refined theory of the localization length in the quantum kicked rotator and in similar Floquet systems, where we must predict not only the mean value of the inverse of the localization length L but also its (Gaussian) distribution, in particular the variance. In order to complete our studies we numerically analyze the related behavior of finite time Lyapunov exponents in the standard map and of the 2×2 transfer matrix formalism. This paper extends our recent work
000840317 536__ $$0G:(DE-HGF)POF3-333$$a333 - Anti-infectives (POF3-333)$$cPOF3-333$$fPOF III$$x0
000840317 542__ $$2Crossref$$i2015-04-09$$uhttp://link.aps.org/licenses/aps-default-license
000840317 588__ $$aDataset connected to CrossRef
000840317 7001_ $$0P:(DE-HGF)0$$aRobnik, Marko$$b1
000840317 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.91.042904$$bAmerican Physical Society (APS)$$d2015-04-09$$n4$$p042904$$tPhysical Review E$$v91$$x1539-3755$$y2015
000840317 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.91.042904$$gVol. 91, no. 4, p. 042904$$n4$$p042904$$tPhysical review / E$$v91$$x1539-3755$$y2015
000840317 8564_ $$uhttps://juser.fz-juelich.de/record/840317/files/PhysRevE.91.042904.pdf$$yOpenAccess
000840317 8564_ $$uhttps://juser.fz-juelich.de/record/840317/files/PhysRevE.91.042904.gif?subformat=icon$$xicon$$yOpenAccess
000840317 8564_ $$uhttps://juser.fz-juelich.de/record/840317/files/PhysRevE.91.042904.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840317 8564_ $$uhttps://juser.fz-juelich.de/record/840317/files/PhysRevE.91.042904.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840317 8564_ $$uhttps://juser.fz-juelich.de/record/840317/files/PhysRevE.91.042904.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840317 8564_ $$uhttps://juser.fz-juelich.de/record/840317/files/PhysRevE.91.042904.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840317 909CO $$ooai:juser.fz-juelich.de:840317$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000840317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164577$$aForschungszentrum Jülich$$b0$$kFZJ
000840317 9131_ $$0G:(DE-HGF)POF3-333$$1G:(DE-HGF)POF3-330$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lInfektionsforschung$$vAnti-infectives$$x0
000840317 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840317 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840317 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000840317 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840317 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840317 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840317 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840317 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840317 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840317 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840317 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2015
000840317 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840317 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840317 920__ $$lyes
000840317 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000840317 980__ $$ajournal
000840317 980__ $$aVDB
000840317 980__ $$aUNRESTRICTED
000840317 980__ $$aI:(DE-Juel1)INM-7-20090406
000840317 9801_ $$aFullTexts
000840317 999C5 $$1H. J. Stöckmann$$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9780511524622$$y1999
000840317 999C5 $$1F. Haake$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-662-04506-0$$y2001
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.56.541
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9601(87)90203-9
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/22/7/017
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(90)90067-C
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.89.022905
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.56.677
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.87.062905
000840317 999C5 $$1M. Robnik$$2Crossref$$oM. Robnik 1998$$y1998
000840317 999C5 $$1M. L. Mehta$$2Crossref$$oM. L. Mehta Random Matrices 1991$$tRandom Matrices$$y1991
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-1573(97)00088-4
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.52.1
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02798790
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/19/5/020
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/3-540-17171-1
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rspa.1985.0078
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1238/Physica.Topical.090a00128
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.014103
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/37/3/L02
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.72.046207
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/11/10/103025
000840317 999C5 $$1T. Prosen$$2Crossref$$oT. Prosen Proceedings of the International School of Physics “Enrico Fermi,” Course CXLIII 2000$$tProceedings of the International School of Physics “Enrico Fermi,” Course CXLIII$$y2000
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02727859
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.53.385
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/43/21/215101
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/102/50008
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/46/31/315102
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.88.052913
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BFb0021732
000840317 999C5 $$1C. Froeschlé$$2Crossref$$oC. Froeschlé 1970$$y1970
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(79)90023-1
000840317 999C5 $$1Y. B. Zeldovich$$2Crossref$$oY. B. Zeldovich 1966$$y1966
000840317 999C5 $$1F. M. Izrailev$$2Crossref$$oF. M. Izrailev 1979$$y1979
000840317 999C5 $$1F. M. Izrailev$$2Crossref$$oF. M. Izrailev 1979$$y1979
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01018394
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01029131
000840317 999C5 $$1B. V. Chirikov$$2Crossref$$oB. V. Chirikov 1981$$y1981
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9601(88)90538-5
000840317 999C5 $$1A. J. Lichtenberg$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4757-2184-3$$y1992
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.53.R5553
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/PTP.70.1264
000840317 999C5 $$1E. Ott$$2Crossref$$oE. Ott Chaos in Dynamical Systems 1993$$tChaos in Dynamical Systems$$y1993
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.49.509
000840317 999C5 $$1R. Prange$$2Crossref$$oR. Prange Como Conference on Quantum Chaos 1984$$tComo Conference on Quantum Chaos$$y1984
000840317 999C5 $$1A. Crisanti$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-84942-8$$y1993
000840317 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0167-2789(98)00226-7