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We study the quantum kicked rotator in the classically fully chaotic regime K = 10 and for various values

of the quantum parameter k using Izrailev’s N -dimensional model for various N � 3000, which in the limit

N → ∞ tends to the exact quantized kicked rotator. By numerically calculating the eigenfunctions in the basis of

the angular momentum we find that the localization length L for fixed parameter values has a certain distribution;

in fact, its inverse is Gaussian distributed, in analogy and in connection with the distribution of finite time

Lyapunov exponents of Hamilton systems. However, unlike the case of the finite time Lyapunov exponents,

this distribution is found to be independent of N and thus survives the limit N = ∞. This is different from

the tight-binding model of Anderson localization. The reason is that the finite bandwidth approximation of the

underlying Hamilton dynamical system in the Shepelyansky picture [Phys. Rev. Lett. 56, 677 (1986)] does not

apply rigorously. This observation explains the strong fluctuations in the scaling laws of the kicked rotator, such

as the entropy localization measure as a function of the scaling parameter � = L/N , where L is the theoretical

value of the localization length in the semiclassical approximation. These results call for a more refined theory of

the localization length in the quantum kicked rotator and in similar Floquet systems, where we must predict not

only the mean value of the inverse of the localization length L but also its (Gaussian) distribution, in particular the

variance. In order to complete our studies we numerically analyze the related behavior of finite time Lyapunov

exponents in the standard map and of the 2 × 2 transfer matrix formalism. This paper extends our recent work

[Phys. Rev. E 87, 062905 (2013)].
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I. INTRODUCTION

Time-periodic (Floquet) quantum systems, whose classical

analog is fully chaotic and diffusive, typically exhibit dynam-

ical localization [1,2], if a certain semiclassical condition is

satisfied, as explained below. We study the periodically kicked

rotator in the classically fully chaotic regime K = 10 using

Izrailev’s N -dimensional model [3–6] for various N � 3000,

which in the limit N → ∞ tends to the quantized kicked

rotator. We restrict our analysis to the case K = 10 because

this is empirically the most typical uniformly chaotic regime,

apparently free of any islands of stability or acceleration modes

[7]. Due to the finiteness of N the observed (dimensionless)

localization length of the eigenfunctions in the space of

the angular momentum quantum number does not possess a

sharply defined value but has a certain distribution instead.

Its reciprocal value is almost Gaussian distributed. This might

be expected on the analogy with the finite time Lyapunov

exponents in the Hamiltonian dynamical systems. In order to

corroborate the theoretical findings on this topics we perform

in Secs. IV and VI the numerical analysis of the finite time

Lyapunov exponents in the standard map (classical kicked
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rotator), especially the decay of the variance. Indeed, in

the Shepelyansky picture [8] the localization length can be

obtained as the inverse of the smallest positive Lyapunov

exponent of a finite 2k-dimensional Hamilton system asso-

ciated with the band matrix representation of the quantum

kicked rotator, where k is the quantum kick parameter (to be

precisely defined below). In this picture, N plays the role of

time. However, unlike the chaotic classical maps or products of

transfer matrices in the Anderson tight-binding approximation,

where the mean value of the finite time Lyapunov exponents

is usually equal to their asymptotical value of infinite time and

the variance decreases inversely with time, as we also carefully

checked (see Secs. V and VI), here the distribution is found

to be independent of N : It has a nonzero variance even in the

limit N → ∞. The reason is that the quantum kicked rotator

at N = ∞ cannot be exactly modeled with finite bandwidth

(equal to 2k) band matrices, but only approximately, such that

the underlying Hamilton system of the Shepelyansky picture

has a growing dimension with N , implying asymptotically an

infinite set of Lyapunov exponents and behavior different from

the finite dimensional Hamiltonian systems. The observation

of the distribution of the localization length around its mean

value with finite variance also explains the strong fluctuations

in the scaling laws of the kicked rotator, such as the entropy

localization measure as a function of the theoretical scaling

parameter �, to be discussed below. On the other hand,

the two different empirical localization measures, namely,
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the mean localization length as extracted directly from the

exponentially localized eigenfunctions and the measure based

on the information entropy of the eigenstates, are perfectly

well linearly connected and thus equivalent. Therefore these

results call for a refined theory of the localization length in the

quantum kicked rotator and similar systems, where we must

predict not only the mean value of the inverse localization

length but also its (Gaussian) distribution, in particular the

variance. This paper is a follow-up to our recent work

[9].

The time-independent and time-periodic systems have

much in common when discussing the localization properties

of the chaotic eigenstates and of the corresponding energy

spectra. The main result of stationary quantum chaos (or wave

chaos) [1,2,10] is the discovery that in classically fully chaotic,

ergodic, autonomous Hamilton systems with the purely dis-

crete spectrum the fluctuations of the energy spectrum around

its mean behavior obey the statistical laws described by the

Gaussian random matrix theory (RMT) [11,12], provided

that we are in the sufficiently deep semiclassical limit. The

latter semiclassical condition means that all relevant classical

transport times are smaller than the so-called Heisenberg time,

or break time, given by tH = 2π�/�E, where h = 2π� is the

Planck constant and �E is the mean energy level spacing,

such that the mean energy level density is ρ(E) = 1/�E.

This statement is known as the Bohigas-Giannoni-Schmit

(BGS) conjecture and goes back to their pioneering paper in

1984 [13], although some preliminary ideas were published

in Ref. [14]. Since �E ∝ �
f , where f is the number of

degrees of freedom (= the dimension of the configuration

space), we see that for sufficiently small � the stated condition

will always be satisfied. Alternatively, fixing the �, we can

go to high energies such that the classical transport times

become smaller than tH . The role of the antiunitary symmetries

that classify the statistics in terms of GOE, GUE, or GSE

(ensembles of RMT) has been elucidated in Ref. [15]; see

also Refs. [16] and [1,2,10,11]. The theoretical foundation

for the BGS conjecture has been initiated first by Berry [17],

and later further developed by Richter and Sieber [18], arriving

finally in the almost-final proof proposed by the group of Haake

[19–22].

Here it must be emphasized again that considering the

chaotic eigenstates and their dynamical localization properties

there are strong analogies between the time-periodic systems

(like the kicked rotator) and time-independent systems (like

static billiards) [23], where the Brody distribution [24,25]

plays a key role, as discussed in Refs. [9,26–29].

The paper is organized as follows: In Sec. II we define

the model, in Sec. III we present the evidence for and the

description of the distribution of the localization measures,

in Sec. IV we study the finite time Lyapunov exponents of

the classical standard mapping as a generic example of a

chaotic area preserving mapping, in Sec. V we study the finite

time Lyapunov exponents of the product of two-dimensional

random symplectic matrices describing the tight-binding

model of Anderson localization, in Sec. VI we present the

high precision numerical results for the decay of the variance

of the distribution of the finite Lyapunov exponents of Secs. IV

and V, and in Sec. VII we conclude and discuss the results in

the broader theoretical perspective.

II. THE KICKED ROTATOR, THE IZRAILEV MODEL,

AND THE DYNAMICAL LOCALIZATION

The kicked rotator was introduced by Casati et al. [30].

Here we follow our notation [9]. The Hamiltonian function is

H =
p2

2I
+ V0 δT (t) cos θ. (1)

Here p is the (angular) momentum, I the moment of inertia,

V0 is the strength of the periodic kicking, θ ∈ [0,2π ) is

the (canonically conjugate, rotation) angle, and δT (t) is the

periodic Dirac delta function with period T . Between the kicks

the rotation is free, and thus the dynamics can be reduced to

the standard mapping,

pn+1 = pn + V0 sin θn+1, θn+1 = θn +
T

I
pn, (2)

as introduced in Refs. [31–33]. The quantities (θn,pn) refer to

their values just immediately after the nth kick. By using new

dimensionless momentum Pn = pnT/I , we get

Pn+1 = Pn + K sin θn+1, θn+1 = θn + Pn, (3)

where the system has now a single classical dimensionless

control parameter K = V0T/I .

The quantum kicked rotator (QKR) is the quantized version

of Eq. (1), namely,

Ĥ = −
�

2

2I

∂2

∂θ2
+ V0 δT (t) cos θ. (4)

The Floquet operator F̂ acting on the wave functions (prob-

ability amplitudes) ψ(θ ), θ ∈ [0,2π ), upon each period (of

length T ) can be written as (see, e.g., Ref. [1], Chapter 4)

F̂ = exp

(

−
iV0

�
cos θ

)

exp

(

−
i�T

2I

∂2

∂θ2

)

, (5)

where now we have two dimensionless quantum control

parameters,

k =
V0

�
, τ =

�T

I
, (6)

which satisfy the relationship K = kτ = V0T/I , K being the

classical dimensionless control parameter of Eq. (3). By using

the angular momentum eigenfunctions

〈θ |n〉 = an(θ ) =
1

√
2π

exp(i n θ ), (7)

where n is any integer, we find the matrix elements of F̂ ,

namely,

Fmn = 〈m|F̂ |n〉 = exp

(

−
iτ

2
n2

)

in−mJn−m(k), (8)

where Jν(k) is the νth order Bessel function. For a wave func-

tion ψ(θ ) we shall denote its angular momentum component

(Fourier component) by

un = 〈n|ψ〉 =
∫ 2π

0

a∗
n(θ )ψ(θ ) dθ

=
1

√
2π

∫ 2π

0

ψ(θ ) exp(−inθ ) dθ. (9)
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The QKR has very complex dynamics and spectral properties.

As the phase space is infinite (cylinder), p ∈ (−∞, + ∞),θ ∈
[0,2π ), the spectrum of the eigenphases of F̂ , denoted by φn,

or the associated quasienergies �ωn = �φn/T , introduced by

Zeldovich [34], can be continuous or discrete [35–37].

The asymptotic localized eigenstates are exponentially

localized. The (dimensionless) theoretical localization length

in the space of the angular momentum quantum numbers is

given below and is equal (after introducing some numerical

correction factor αµ) to the dimensionless localization time tloc

[Eq. (12), given below]. We denote it unlike in Refs. [6] and

[9] by L. Therefore, an exponentially localized eigenfunction

centered at m in the angular momentum space [Eq. (7)] has

the following form:

|un|2 ≈
1

L
exp

(

−
2|m − n|

L

)

, (10)

where un is the probability amplitude [Eq. (9)] of the localized

wave function ψ(θ ). The argument leading to tloc in Eq. (12)

given below originates from the observation of the dynamical

localization in Ref. [30], and in particular from Ref. [38],

and is well explained in Ref. [1], in case of normal diffusion,

while for general anomalous diffusion we gave a theoretical

argument in Ref. [9]. We shall denote σ = 2/L and will

later determine the σ directly from the individual numerically

calculated eigenstate.

The question arises, Where do we see the phenomena

(spectral statistics, namely, Brody-like level spacing distri-

bution) analogous in the quantum chaos of time-independent

bound systems with discrete spectrum? To see these effects

the system must have an effectively finite dimension, because

in the infinite dimensional case we simply observe Poissonian

statistics. Truncation of the infinite matrix Fmn in Eq. (8) in

a tour de force is not acceptable, even in the technical case

of numerical computations, since after truncation the Floquet

operator is no longer unitary.

The only way to obtain a quantum system which will

in this sense correspond to the classical dynamical system

[Eqs. (1), (2), and (3)] is to introduce a finite N -dimensional

matrix, which is symmetric unitary, and which in the limit

N → ∞ becomes the infinite dimensional system with the

Floquet operator [Eq. (5)]. The semiclassical limit is k → ∞
and τ → 0, such that K = kτ = const. As is well known

[6], for the reasons discussed above, the system behaves very

similarly for rational and irrational values of τ/(4π ). Such an

N -dimensional model [39] will be introduced below.

The generalized diffusion process of the standard map (3)

is defined by

〈(�P )2〉 = Dµ(K)nµ, (11)

where n is the number of iterations (kicks), and the exponent

µ is in the interval [0,2), and all variables P , θ , and K

are dimensionless. Here Dµ(K) is the generalized classical

diffusion constant. The averaging 〈.〉 is over an ensemble

of initial conditions with fixed P , specifically in our case

P = 0. In case µ = 1 we have the normal diffusion, and

D1(K) is then the normal diffusion constant, while in the

case of anomalous diffusion we observe subdiffusion when

0 < µ < 1, or superdiffusion if 1 < µ � 2. In the case µ = 2

we have the ballistic transport which is associated with the

presence of accelerator modes (see below).

Following Ref. [9] we find that the dimensionless Heisen-

berg time, also called break time or localization time, denoted

by tloc, in units of kicking period T , is equal to the dimension-

less localization length L:

L ≈ tloc =
[

αµ

Dµ(K)

τ 2

]
1

2−µ

, (12)

where αµ is a numerical constant to be determined empirically,

and in the case of normal diffusion µ = 1 is close to 1/2.

In case of the normal diffusion µ = 1, considered in the

present paper, the theoretical value of D1(K) is given in the

literature, e.g., in Refs. [6] or [40],

D1(K) =

{

1
2
K2{1− 2J2(K)[1− J2(K)]}, if K � 4.5

0.15(K − Kcr)
3, if Kcr < K � 4.5

,

(13)

where Kcr ≃ 0.9716 and J2(K) is the Bessel function. Here

we neglect higher terms of order K−2. In the present paper

we shall consider exclusively the case K = 10, which has

been carefully checked to be fully chaotic, without any regular

islands, and well described by the normal diffusion µ = 1, so

that the above formula applies very well [7].

The motion of the QKR [Eq. (4)] after one period T of

the ψ wave function can be described also by the following

symmetrized Floquet mapping, describing the evolution of the

kicked rotator from the middle of a free rotation over a kick to

the middle of the next free rotation:

ψ(θ,t + T ) = Ûψ(θ,t),

Û = exp

(

i
T �

4I

∂2

∂θ2

)

exp

(

−i
V0

�
cos θ

)

× exp

(

i
T �

4I

∂2

∂θ2

)

. (14)

Thus, the ψ(θ,t) function is determined in the middle of the

rotation, between two successive kicks. The evolution operator

Û of the system corresponds to one period.

In the case K ≡ kτ ≫ 1 the motion is well known to be

strongly chaotic, for K = 10 certainly without any regular

islands of stability, and also there are no accelerator modes, so

that the diffusion is normal (µ = 1). We have carefully checked

that the case K = 10 is the closest to the normal diffusion

µ = 1 for all K ∈ [0,70]. The transition to classical mechanics

is described by the limit k → ∞, τ → 0 while K = const. We

shall consider the regimes on the interval 3 � k � 20 but will

concentrate mostly on the semiclassical regime k � K , where

τ � 1.

In order to study how the localization affects the statistical

properties of the quasienergy spectra, we use the model’s

representation in the momentum space with a finite number

N of levels [3–6,39], which we refer to as an Izrailev model:

un(t + T ) =
N

∑

m=1

Unmum(t), n,m = 1,2, . . . ,N . (15)
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The finite symmetric unitary matrix Unm determines the evolu-

tion of an N -dimensional vector, namely, the Fourier transform

un(t) of ψ(θ,t), and is composed in the following way:

Unm =
∑

n′m′

Gnm′Bn′m′Gn′m, (16)

where Gll′ = exp(iτ l2/4)δll′ is a diagonal matrix

corresponding to free rotation during a half period T/2, and the

matrix Bn′m′ describing the one kick has the following form:

Bn′m′ =
1

2N + 1

2N+1
∑

l=1

{

cos

[

(n′ − m′)
2πl

2N + 1

]

− cos

[

(n′ + m′)
2πl

2N + 1

]}

exp

[

−ik cos

(

2πl

2N + 1

)]

.

(17)

The Izrailev model in Eqs. (15)–(17) with a finite number

of states is considered as the quantum analog of the classical

standard mapping on the torus with closed momentum p

and phase θ , where Unm describes only the odd states of the

systems, i.e., ψ(θ ) = −ψ(−θ ), provided we have the case of

the quantum resonance, namely, τ = 4πr/(2N + 1), where

r is a positive integer. The matrix (17) is obtained by starting

the derivation from the odd-parity basis of sin(nθ ) rather than

the general angular momentum basis exp(inθ ).

Nevertheless, we shall use this model for any value of τ

and k, as a model which in the resonant and in the generic case

[irrational τ/(4π )] corresponds to the classical kicked rotator,

and in the limit N → ∞ approaches the infinite dimensional

model [Eq. (14)], restricted to the symmetry class of the odd

eigenfunctions. It is of course just one of the possible discrete

approximations to the continuous infinite dimensional model.

The difference of behavior between the generic case and

the quantum resonance shows up only at very large times,

which grow fast with (2N + 1), as explained in Ref. [9]. It

turns out that also the eigenfunctions and the spectra of the

eigenphases at finite dimension N of the matrices that we

consider do not show any significant differences in structural

behavior for the rational or irrational τ/(4π ), which we have

carefully checked. Indeed, although the eigenfunctions and the

spectrum of the eigenphases exhibit sensitive dependence on

the parameters τ and k, their statistical properties are stable

against the small changes of τ and k. This is an advantage, as

instead of using very large single matrices for the statistical

analysis, we can take a large ensemble of smaller matrices for

values of τ and k around some central value of τ = τ0 and

k = k0, which greatly facilitates the numerical calculations

and improves the statistical significance of our empirical

results. Therefore our approach is physically meaningful.

Similar approach was undertaken by Izrailev (see Ref. [6] and

references therein). In Fig. 1 of Ref. [9] we show the examples

of strongly exponentially localized eigenstates by plotting

the natural logarithm of the probabilities wn = |un|2 versus

the momentum quantum number n, for two different matrix

dimensions N . By calculating the localization length L from

the slopes σ = 2/L of these eigenfunctions using Eq. (10) we

can get the first quantitative empirical localization measure to

be discussed and used later on. The new finding of this paper

is that σ has a distribution, which is close to the Gaussian
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FIG. 1. We show 〈σ 〉 versus 2/〈lH 〉 for matrices of dimension

N = 3000, for seven nearby values of k, namely, k = k0 ± jδk,

where j = 0,1,2,3 and δk = 0.00125, for k0 = 3,4,5, . . . ,19. The

two empirical localization measures are clearly well defined, linearly

related, and thus equivalent.

(but cannot be exactly that, because σ is a positive definite

quantity). It does not depend on N and survives the limit

N → ∞. Therefore also L has a distribution whose variance

does not vanish in the limit N → ∞.

Following Refs. [9] and [6] we introduce another measure

of localization. For each N -dimensional eigenvector of the

matrix Unm the information entropy is

HN (u1, . . . ,uN ) = −
N

∑

n=1

wn ln wn, (18)

where wn = |un|2 and
∑

n |un|2 = 1. We denote

H
GOE

N = ψ
(

1
2
N + 1

)

− ψ
(

3
2

)

≃ ln
(

1
2
Na

)

+ O(1/N),

(19)

where a = 4
exp(2−γ )

≈ 0.96, while ψ is the digamma function

and γ the Euler constant (≃0.57721 . . .). We thus define the

entropy localization length lH as

lH = N exp
(

HN − H
GOE

N

)

. (20)

Indeed, for entirely extended eigenstates lH = N . Thus, lH
can be calculated for every eigenstate individually. However,

all eigenstates, while being quite different in detail, are

exponentially localized, and thus statistically very similar.

Therefore, in order to minimize the fluctuations one uses

the mean localization length d ≡ 〈lH 〉, which is computed by

averaging the entropy over all eigenvectors of the same matrix

(or even over an ensemble of similar matrices of the same N

but nearby k):

d ≡ 〈lH 〉 = N exp
(

〈HN 〉 − H
GOE

N

)

. (21)

The localization parameter βloc is then defined as

βloc =
d

N
≡

〈lH 〉
N

. (22)

The parameter that determines the transition from weak to

strong quantum chaos is neither the strength parameter k nor
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the localization lengthL, but the ratio of the localization length

L to the size N of the system in momentum p,

� =
L

N
=

1

N

[

αµDµ(K)

τ 2

]
1

2−µ

, (23)

where L ≈ tloc, the theoretical localization length Eq. (12),

was derived in Ref. [9]. � is the scaling parameter of the

system. The relationship of � to βloc is discussed in Sec. VII

of Ref. [9].

III. THE DISTRIBUTION OF THE LOCALIZATION

LENGTH AND OTHER LOCALIZATION MEASURES

In this section we present the main results of the paper.

First, we demonstrate that the localization measures 2/σ and

lH are very well defined, linearly related, and thus equivalent.

In Fig. 1 we show this in the diagram of the mean 〈σ 〉 versus

2/〈lH 〉, where both averagings are over all eigenfunctions for

matrices of dimension N = 3000, for seven nearby values of

k around k0, namely, k = k0 ± jδk, where j = 0,1,2,3 and

δk = 0.00125, for k0 = 3,4,5, . . . ,19.

In Fig. 2 we show the relationship of the theoretical L
in Eq. (12) and the mean value of the empirical 2/〈σ 〉 for

k0 = 3,4,5, . . . ,19. It is clearly seen in Fig. 2(a) that there

are strong fluctuations which we attribute to the fact that 2/σ

has a certain distribution with nonvanishing variance, to be

presented and described below, and that the theory of L is too

simple, as it corresponds only roughly to the value of 2/〈σ 〉. On

the other hand, in Fig. 2(b) we see again that the two empirical

localization measures are exactly linearly related. We should

mention that in the cases of larger k > 19 the slopes σ are

so small, and the localization too weak, that we cannot get

reliable results; thus in this work we limit ourselves to the

interval 3 � k � 19.

Thus we have demonstrated that the empirical localization

measures are well defined, while the theoretical prediction

for their mean values is not good enough. The reason is that

the localization measures of a given fixed system (with fixed

K = 10 and k) have a distribution with nonvanishing variance,

which is out of the scope of current semiclassical theories, as

they do not predict this distribution and the corresponding

variance. This finding as the central result of the present paper

is demonstrated in Fig. 3. The distributions are clearly seen to

be close to a Gaussian but cannot be exactly that as σ is always

a positive definite quantity. Its inverse, the localization length

equal to 2/σ , has a distribution whose empirical histograms are

much further away from a Gaussian, so that in this sense σ is

the fundamental quantity. Indeed, as we will see, it corresponds

to the finite time Lyapunov exponent known in the theory of

dynamical systems.

As lH and 2/σ are equivalent localization measures, the

former one is expected also to have a distribution, which we

demonstrate in the histograms of Fig. 4.

We have also analyzed how the localization measures vary

in the semiclassical limit of the increasing value of the quantum

parameter k, at fixed classical parameter K = 10. Indeed,

the theoretical estimate of L in Eq. (12), at fixed K , and

remembering k = K/τ , shows that approximately the mean

value of the localization length should increase quadratically
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FIG. 2. (Color online) (a) We show L versus 2/〈σ 〉 for matrices

of dimension N = 1000 (crosses and solid fit line) and for matrices

of dimension N = 3000 (stars and dashed fit line), for seven nearby

values of k, namely, k = k0 ± jδk, where j = 0,1,2,3 and δk =
0.00125, for k0 = 3,4,5, . . . ,19. (b) We plot the mean value of

2/(N〈σ 〉) versus βloc for k0 = 3,4,5, . . . ,19 and seven matrices of

dimension N = 3000 with k = k0 ± jδk, where j = 0,1,2,3 and the

step size δk = 0.00125.

with k, or equivalently, the slope σ should decrease inversely

quadratically with k. This prediction is observed and is

demonstrated in Table I and in Fig. 5. It is also in agreement

with the prediction based on the tight-binding approximations

in Ref. [41] [Eq. (6)]. We give, in Table I, the mean slope σ

and the standard deviation of σ , as well as the mean value

of the related quantity 2/lH and its standard deviation for

various k = k0 = 3,4,5, . . . ,19, for each of them taking seven

nearby values of k, namely, k = k0 ± jδk, where j = 0,1,2,3

and δk = 0.00125, for matrices of dimension N = 3000. Each

histogram for all k0 was fitted with the Gaussian distribution,

and then the mean values and the standard deviations were

extracted. All four quantities decrease to zero with increasing

k, meaning that in the semiclassical limit the localization

lengths monotonically increase to infinity, so that in this limit

we have asymptotically extended states (no localization), and

their standard deviation also goes to zero as 1/k2, which is

different from the tight-binding approximations in Ref. [41]

[Eq. (9)].

Next we want to study how does the distribution of the

localization measure σ behave as a function of the dimension
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FIG. 3. We show the histograms of the slopes σ for four systems,

matrices of dimension N = 3000, for each of them with seven

different values of k close to k0 = 5,9,13,17, namely, k = k0 ± jδk,

where j = 0,1,2,3 and δk = 0.00125: (a) k0 = 5, (b) k0 = 9, (c)

k0 = 13, and (d) k0 = 17.

TABLE I. The mean value and the standard deviation of the slopes

σ and 2/lH as a function of k = k0 = 3,4,5, . . . ,19. For each k = k0

we used N = 7 × 3000 slopes σ (see text). All quantities decay to

zero in the semiclassical limit.

K = 10 N = 7 × 3000 (slopes) N = 3000(2/lH )

k 〈σ 〉 SDσ 〈2/lH 〉 SD2/lH

3 0.06209 0.01324 0.062098 0.01324

4 0.04327 0.01073 0.043272 0.01073

5 0.04636 0.00758 0.046363 0.00758

6 0.04030 0.00974 0.040303 0.00974

7 0.04095 0.00838 0.040954 0.00838

8 0.03004 0.00756 0.030047 0.00756

9 0.03174 0.00600 0.031743 0.00600

10 0.02835 0.00539 0.028355 0.00539

11 0.02034 0.00353 0.020341 0.00353

12 0.02014 0.00321 0.020143 0.00321

13 0.01719 0.0029 0.017193 0.00294

14 0.01750 0.00289 0.017509 0.00289

15 0.01356 0.00230 0.013569 0.00230

16 0.01221 0.00194 0.012213 0.00194

17 0.00978 0.00148 0.009787 0.00148

18 0.00855 0.00128 0.008550 0.00128

19 0.00975 0.00141 0.009754 0.00141

N of the Izrailev model Eqs. (15)–(17). Since in the limit

N → ∞ the model converges to the infinitely dimensional

quantum kicked rotator, we would at first sight expect that

following the Shepelyansky picture [8] σ should converge to its

asymptotic value, which is sharply defined in the sense that the

variance of the distribution of σ goes to zero inversely with N .

Namely, at fixed K and k Shepelyansky reduces the problem

of calculating the localization length to the problem of the

finite time Lyapunov exponents of the approximate underlying

finite dimensional Hamilton system with dimension 2k. The

localization length is then found to be equal to the inverse

value of the smallest positive Lyapunov exponent. In our

case, the dimension of the matrices N of the Izrailev model

plays the role of time. As it is known, and analyzed in detail in

the next sections, the finite time Lyapunov exponents have a

distribution, which is almost Gaussian, and its variance decays

to zero inversely with time. Thus on the basis of this we would

expect that the variance of σ decays inversely with N .

However, this is not what we observe. In Table II we clearly

see that at constant K = 10 and k = 10 the mean value of σ

TABLE II. The mean value and the variance of the slope σ as a

function of the matrix dimension N for a fixed system with K = 10

and k = 10. Both are obviously constant.

K = 10 k = 10

N 〈σ 〉 varσ

500 0.102624 0.00113224

1000 0.101170 0.00112558

2000 0.100066 0.00115575

3000 0.102217 0.00110438
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FIG. 4. We show the histograms of lH in (a) and 2/lH in (b) for the system k = 10 described by the matrices of dimension N = 3000. In

both cases we show the Gaussian best fit.

is constant and obviously equal to its asymptotic value of

N = ∞, while the variance of σ does not decrease with N ,

as 1/N , but is constant instead, independent of N . This is

in disagreement with the banded-matrix models of the tight-

binding approximations and thus disagrees with Eq. (9) of

Ref. [41] and with the Shepelyansky picture. The reason is

that the associated Shepelyansky’s Hamilton system is only

an approximate construction, because with increasing N the

matrix elements of the Floquet propagator (matrix) outside

the diagonal band of width 2k become important, and thus

the dimension of the Hamilton system cannot be considered

finite, constant, and equal to 2k, but increases with N . As a

consequence we have the constant value of the variance of

σ , and thus constant variance of the localization length L =
2/σ , and therefore the localization length has a distribution

with nonvanishing variance even in the limit N = ∞. This

is precisely the reason why the semiclassical prediction of

the localization length in Eq. (12) fails in detail, and we find

strong fluctuations in the plot of L against the 2/σ of Fig. 2.

The proper theory of the localization length must predict its

distribution rather than just its approximate mean value.

IV. NUMERICAL STUDY OF FINITE TIME LYAPUNOV

EXPONENTS FOR THE CLASSICAL STANDARD MAP

Finite time Lyapunov exponents of chaotic systems are

a subject with not very much intense research. Taking an

ensemble of uniformly distributed initial conditions of a uni-

formly chaotic (ergodic) system (with no islands of stability)

we of course expect that for any finite time the Lyapunov

exponents will have a certain distribution. With increasing

time the mean value of each of them is expected to converge to

the asymptotic Lyapunov exponent, and since the asymptotic

Lyapunov exponent must be the same for all initial conditions,

the distribution must converge to the Dirac delta distribution.

Some early results on this topic go back to the 1980s, in the

work of Fujisaka [42], reviewed and summarized by Ott [43].

Some details are not so important, as it turns out that the
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FIG. 5. We show log-log plots in (a) the mean slope 〈σ 〉 as a function of k and in (b) the standard deviation of σ as a function of k. The

fitting by a straight line is only on the semiclassical interval 10 � k � 19. In the former case the behavior is roughly as 1/k2, in agreement with

the theoretical estimate 1/k2 of Eq. (12), and in the latter case also like 1/k2, surely not as the theoretical estimate 1/k based on the Lyapunov

exponents method in Ref. [41] [Eq. (9)].
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FIG. 6. We show the histograms of the positive finite time

Lyapunov exponents for the standard map [Eq. (3)] with K = 10

and times (number of iterations) t = 50,100,500,1000 in (a), (b), (c),

and (d), respectively. The initial conditions are on the grid 200 × 200

on the square [0,2π ) × [0,2π ). In all cases we show the Gaussian

best fit.

distribution becomes Gaussian very fast with increasing time,

which we want to demonstrate in this section.

In Fig. 6 we show the histograms of the positive finite

time Lyapunov exponent for the standard map [Eq. (3)] with

K = 10, for the finite times (= number of iterations) t =
50,100,500,1000 in (a), (b), (c), and (d), respectively. The ini-

tial conditions, 200 × 200 on a grid, have been taken uniformly

distributed over the square 2π × 2π . Already at t = 50 the

distribution is quite close to a Gaussian, and this trend increases

very fast. At longer times like t = 2000,3000,4000,5000 it

becomes a perfect Gaussian distribution (not shown). The

variance decreases as 1/t , as is demonstrated and analyzed

in Sec. VI.

V. NUMERICAL STUDY OF FINITE TIME LYAPUNOV

EXPONENTS FOR THE PRODUCT OF RANDOM

SYMPLECTIC 2D MATRICES

As is well known the problem of quantum or dynamical

localization is related to the Anderson localization model,

within the framework of the tight-binding approximation,

with hopping transitions between the nearest neighbors only.

This goes back to the pioneering work of Fishman, Grempel,

and Prange [44], as discussed in Refs. [1,2], and also

reviewed in Ref. [45]. Assuming the nonvanishing nearest

neighbor interaction only and the site disorder, the governing

Schrödinger equation is [1]

an+1 + E0
nan + an−1 = Ean, (24)

where E is the eigenenergy of the eigenfunction, while E0
n

is the fluctuating on-site potential, varying from site to site,

with a certain probability distribution. Therefore we have the

equation
(

an+1

an

)

= Tn

(

an

an−1

)

, (25)

where the 2 × 2 transfer matrix Tn is given by

Tn =
(

E − E0
n −1

1 0

)

. (26)

The determinant is equal to one, and W = E − E0
n is drawn

from a distribution, defined by a given model. Therefore

the asymptotic properties of the eigenfunction coefficients

an as a function of n are determined by the behavior of the

product of the random transfer matrices, T = TnTn−1 · · · T2T1.

Everything is determined by the trace B = T rT . If |B| > 2

the eigenvalues of T are real reciprocals, λ > 1 and 1/λ < 1.

Typically λ grows exponentially with n, and Mn = n−1 ln λ >

0 fluctuates with n, has certain distribution for each finite n,

and the limit M = limn→∞ Mn exists. The latter is known as

Furstenburg theorem [46]. Thus, for generic initial condition

(a0,a1) the an will grow exponentially with n and only for a

special initial condition, they will decrease exponentially with

the rate Mn as n → +∞, but still will increase exponentially in

the backward direction n → −∞. There are then exactly the

eigenenergies E for which the an decrease exponentially in

both directions n → ±∞. In such case then Mn, the finite

time Lyapunov exponent, is precisely the inverse value of

the localization length in the n space. Thus, for the finite
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FIG. 7. The histograms of the positive finite time Lyapunov

exponents for the product of random matrices [Eq. (26)] with

W = E − E0
n uniformly distributed in a box W ∈ [−2, + 2], for

n = 50,100,500,1000 in (a), (b), (c), and (d), respectively. In all

cases we show the Gaussian best fit.

system n < ∞, we shall have a certain distribution of the

Lyapunov exponents Mn. Indeed, this is observed in our

numerical experiments shown in Fig. 7, for the box distribution

of W , namely, within the interval W ∈ [−2, + 2], for four

values n = 50,100,500,1000, and for each of them for 10 000

realizations, drawn from the distribution of W , and we see that

the Gaussian approximation is very good and becomes perfect

for longer values of n, such as n = 2000,3000,4000,5000 (not

shown).

We have also analyzed what happens if we replace the box

distribution of W by other distributions, and we convinced

ourselves that the dependence on the details of the distribution

of W is very weak, as the distribution of the finite time

Lyapunov exponents is always Gaussian. In Fig. 8(a) we

show the histogram of the finite time Lyapunov exponents

for n = 100 with the Gaussian distribution of W with zero

mean and standard deviation equal to one.

One might expect that things will be changed drastically if

the distribution of W is different, with diverging variance.

In Fig. 8(b) we show the result for the Cauchy-Lorentz

distribution of W defined as follows:

P (W ) =
1

π

b

W 2 + b2
, (27)

where b is the half width at the half maximum, and we have

chosen b = 1. We have taken the values inside the cutoff

interval [−2, + 2] and n = 100, and then the same thing for the

interval [−100, + 100] and n = 100 in Fig. 8(c). We clearly

see that the distribution is always Gaussian.

VI. NUMERICAL STUDY OF THE DECAY OF THE

VARIANCE OF THE DISTRIBUTION OF THE FINITE

TIME LYAPUNOV EXPONENTS

Finally, in this section we present numerical evidence for

the theoretical expectation [43] that the finite time Lyapunov

exponents have approximately Gaussian distribution whose

variance decreases inversely with time t (the number of

iterations in the case of the standard map; see Sec. IV)

and n in the case of the product of random matrices in

the context of the unimodular transfer matrices of the tight-

binding approximation to describe the Anderson localization,

expounded in Sec. V. Indeed, the evidence is overwhelming,

as shown in Fig. 9, where we plot the standard deviation

as a function of time in log-log plot, showing that it decays

inversely with the square root of time.

In the context of our Izrailev model the dimension N of

the matrix plays the role of time. The width of the diagonal

band is equal to 2k. Shepelyansky reduces the problem of

the localization length to the determination of the smallest

positive Lyapunov exponent (its inverse is the localization

length) of the underlying finite dimensional Hamilton system

with dimension 2k. Then, the finite time Lyapunov exponent

should have some almost Gaussian distribution, whose mean

tends to the asymptotic Lyapunov exponent with N → ∞ and

the variance should decrease to zero as 1/N .

If this picture were exact, then the mean localization length

as a function of N should converge to the asymptotic value,

which we do observe in Table II, while the variance does not

decay to zero, but rather remains constant, independent of
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FIG. 8. The histograms of the positive finite time Lyapunov

exponents for the product of random matrices [Eq. (26)] at n = 100

with (a) W = E − E0
n Gaussian distributed with zero mean and

unit variance, (b) Cauchy-Lorentz distribution [Eq. (27)] with W

in the cutoff interval [−2, + 2], and (c) the same as (b) but W ∈
[−100, + 100]. In all cases we show the Gaussian best fit, which is

excellent.

N . From this we conclude that even in the limit N → ∞ the

localization length has a certain distribution with nonvanishing

variance, or more precisely, its inverse (the slope σ ) has an

almost Gaussian distribution with nonvanishing variance. We

believe that this is the cause of the strong fluctuations observed,
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FIG. 9. (Color online) The standard deviation of the positive

finite time Lyapunov exponents for the standard map (stars) and for

the product of random transfer matrices with the box distribution of

W (empty boxes), as a function of time in log − log presentation, and

their best fits. The slope is exactly −1/2.

for example, in Fig. 2(a). The same observation applies to the

scaling laws of Figs. 9 and 10 of our previous paper [9].

VII. SUMMARY

The main conclusion of this paper is the empirical fact

based on our numerical computations of the eigenfunctions of

the N -dimensional Izrailev model, that the localization length

has a distribution with nonvanishing variance not only for

finite N , but even in the limit N → ∞. This is the reason,

we believe, for the strong fluctuations in the scaling laws

which involve the empirical localization measures and the

theoretical semiclassical value of the localization length. In the

Shepelyansky picture [8] this might seem to be a contradiction,

but the resolution of the puzzle is that in the limit of large N

the finite dimensional Hamilton system extracted from the

Floquet propagator of the quantum kicked rotator is not good

enough, and therefore the matrix elements outside the main

diagonal band of width 2k play a role, making the Hamilton

system effectively infinite dimensional, with infinitely many

Lyapunov exponents. This finding is a challenge for the

improved semiclassical theory of the localization length, to

derive and explain the discovered distribution function. On the

other hand, the simple model of the Anderson localization

based on the tight-binding approximation, with only the

nearest neighbor interactions, described by the product of

2 × 2 unimodular matrices, has a finite dimension, as the

transfer matrices are exactly two-dimensional, and therefore

the variance vanishes in the limit of large dimensions as

1/n. The same conclusion applies to such a model with a

finite number of interacting neighbors. Indeed, according to

Refs. [41,47] the variance of σ should vanish as V ar(σ ) ∝
1/(Nk2), but our work shows that in the quantum kicked rotator

this is not observed: the variance does not depend on N and

decays with k faster than 1/k2, namely, as 1/k4. Thus, here

we found some important differences between the dynamical

localization in the quantum kicked rotator and the Anderson

tight-binding model of localization and the Shepelyansky
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picture, which rest upon the banded matrix models with finite

bandwidth.

To summarize: We do not have yet a theory to describe

this behavior, namely, the theory of the distribution of the

localization length, including the variance, rather than just

its average value, as explained in the paper, but only the

clear understanding of what is the reason for this behavior:

The fact that the banded matrix model for the QKR is not

good enough, one has to take into account also the (small but

many) matrix elements outside the main diagonal band, and

therefore the Shepelyansky picture and approximation breaks

down, meaning that the finite dimensional Hamiltonian system

cannot capture the correct behavior of the QKR. Thus, the

problem is open for the future work.
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