001     840318
005     20210129231814.0
024 7 _ |a 10.1093/mnras/stw572
|2 doi
024 7 _ |a 0035-8711
|2 ISSN
024 7 _ |a 1365-2966
|2 ISSN
024 7 _ |a 2128/16002
|2 Handle
024 7 _ |a WOS:000375799500015
|2 WOS
024 7 _ |a altmetric:6143451
|2 altmetric
037 _ _ |a FZJ-2017-07860
082 _ _ |a 520
100 1 _ |a Machado, R. E. G.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Chaotic motion and the evolution of morphological components in a time-dependent model of a barred galaxy within a dark matter halo
260 _ _ |a Oxford
|c 2016
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511946985_9739
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Studies of dynamical stability (chaotic versus regular motion) in galactic dynamics often rely on static analytical models of the total gravitational potential. Potentials based upon self-consistent N-body simulations offer more realistic models, fully incorporating the time-dependent nature of the systems. Here we aim at analysing the fractions of chaotic motion within different morphological components of the galaxy. We wish to investigate how the presence of chaotic orbits evolves with time, and how their spatial distribution is associated with morphological features of the galaxy. We employ a time-dependent analytical potential model that was derived from an N-body simulation of a strongly barred galaxy. With this analytical potential, we may follow the dynamical evolution of ensembles of orbits. Using the Generalized Alignment Index (GALI) chaos detection method, we study the fraction of chaotic orbits, sampling the dynamics of both the stellar disc and of the dark matter halo. Within the stellar disc, the global trend is for chaotic motion to decrease in time, specially in the region of the bar. We scrutinized the different changes of regime during the evolution (orbits that are permanently chaotic, permanently regular, those that begin regular and end chaotic, and those that begin chaotic and end regular), tracing the types of orbits back to their common origins. Within the dark matter halo, chaotic motion also decreases globally in time. The inner halo (r < 5 kpc) is where most chaotic orbits are found and it is the only region where chaotic orbits outnumber regular orbits, in the early evolution.
536 _ _ |a 333 - Anti-infectives (POF3-333)
|0 G:(DE-HGF)POF3-333
|c POF3-333
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Manos, T.
|0 P:(DE-Juel1)164577
|b 1
|u fzj
773 _ _ |a 10.1093/mnras/stw572
|g Vol. 458, no. 4, p. 3578 - 3591
|0 PERI:(DE-600)2016084-7
|n 4
|p 3578 - 3591
|t Monthly notices of the Royal Astronomical Society
|v 458
|y 2016
|x 1365-2966
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/840318/files/stw572.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/840318/files/stw572.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/840318/files/stw572.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/840318/files/stw572.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/840318/files/stw572.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/840318/files/stw572.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840318
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164577
913 1 _ |a DE-HGF
|l Infektionsforschung
|1 G:(DE-HGF)POF3-330
|0 G:(DE-HGF)POF3-333
|2 G:(DE-HGF)POF3-300
|v Anti-infectives
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MON NOT R ASTRON SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21