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ABSTRACT

Studies of dynamical stability (chaotic versus regular motion) in galactic dynamics often

rely on static analytical models of the total gravitational potential. Potentials based upon

self-consistent N-body simulations offer more realistic models, fully incorporating the time-

dependent nature of the systems. Here we aim at analysing the fractions of chaotic motion

within different morphological components of the galaxy. We wish to investigate how the

presence of chaotic orbits evolves with time, and how their spatial distribution is associated

with morphological features of the galaxy. We employ a time-dependent analytical potential

model that was derived from an N-body simulation of a strongly barred galaxy. With this

analytical potential, we may follow the dynamical evolution of ensembles of orbits. Using the

Generalized Alignment Index (GALI) chaos detection method, we study the fraction of chaotic

orbits, sampling the dynamics of both the stellar disc and of the dark matter halo. Within the

stellar disc, the global trend is for chaotic motion to decrease in time, specially in the region

of the bar. We scrutinized the different changes of regime during the evolution (orbits that are

permanently chaotic, permanently regular, those that begin regular and end chaotic, and those

that begin chaotic and end regular), tracing the types of orbits back to their common origins.

Within the dark matter halo, chaotic motion also decreases globally in time. The inner halo

(r < 5 kpc) is where most chaotic orbits are found and it is the only region where chaotic

orbits outnumber regular orbits, in the early evolution.

Key words: methods: numerical – galaxies: evolution – galaxies: haloes – galaxies:

kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

Orbits are generally regarded as the backbone of structure in galax-

ies. Exploring orbital properties in general – and in particular the

evolution of their dynamical stability – is a fundamental aspect in

improving our understanding of galactic structures as a whole. Our

ability to explore the details of orbital stability in galaxies depends

considerably on the adequacy of analytical models, which can be

time-independent (TI) or time-dependent (TD). (See e.g. Vasiliev &

Athanassoula 2015 for a versatile method of creating self-consistent

equilibrium models of galaxies using Schwarzschild orbit superpo-

sition). Studying the stability and the phase space structure via an-

alytical models (see e.g. Manos & Athanassoula 2011) has proven

to be quite useful (for a review, see Contopoulos 2002), as long as

those potentials are realistic, in the sense of adequately representing

the density distributions of real galaxies.

⋆ E-mail: rgmachado@astro.iag.usp.br

An important aspect of the role of chaos in galactic dynamics

is manifested in the form of so-called stickiness or weak chaos

(see e.g. Kandrup, Pogorelov & Sideris 2000; Terzić & Kandrup

2004; Contopoulos & Harsoula 2010), a regime in which an orbit

may not fill phase space as thoroughly as in the strongly chaotic

case. As a result, orbits may spend significant periods in confined

regimes, thus contributing to the rise of stable structures, rather

than hindering it (see e.g. Kaufmann & Contopoulos 1996; Patsis,

Athanassoula & Quillen 1997; Patsis 2006; Romero-Gómez et al.

2006, 2007; Athanassoula, Romero-Gómez & Masdemont 2009a;

Harsoula & Kalapotharakos 2009; Tsoutsis et al. 2009; Athanas-

soula et al. 2010, 2009b; Brunetti, Chiappini & Pfenniger 2011;

Harsoula, Kalapotharakos & Contopoulos 2011b,a; Bountis, Manos

& Antonopoulos 2012; Contopoulos & Harsoula 2013).

Lyapunov exponents (see e.g. Skokos 2010) have been exten-

sively used for the detection of chaotic motion in several different

models. However, there are often disadvantages which hinder their

use. Several approaches exist to detect and quantify chaos, whose

differences and efficacies have been thoroughly compared and

C© 2016 The Authors

Published by Oxford University Press on behalf of the Royal Astronomical Society
Downloaded from https://academic.oup.com/mnras/article-abstract/458/4/3578/2613848
by Forschungszentrum Juelich GmbH, Zentralbibliothek user
on 29 November 2017



Chaotic motion in a barred galaxy model 3579

discussed in the recent literature (see Contopoulos 2002; Maffione

et al. 2011, 2013, and references therein). In Skokos, Gottwald &

Laskar (2016), the reader may find a special volume with a more

complete and recent review of the several chaos detection methods

broadly used and their predictability as well as all the relevant ref-

erences regarding their theoretical background, numerical imple-

mentation and applications in various models. Weinberg (2015a)

recently studied chaotic orbits in a TI model of a barred galaxy

applying a new chaos detection method based on Kolmogorov–

Arnold–Moser theory (Weinberg 2015b). We use the Generalized

Alignment Index (GALI) method (Manos, Bountis & Skokos 2013;

Skokos & Manos 2016).

Although orbital and dynamical analyses almost always focus on

the stellar disc, detailed studies of the orbital structure of haloes have

also been carried out (e.g. Valluri et al. 2010, 2012), characterizing

the orbital families and investigating the effects that baryons play

on the dark matter halo. Specifically, Valluri et al. (2013) studied

the orbital structure of the stellar halo and also of the dark matter

halo, and found that tidal debris in cosmological hydrodynamical

simulations experience more chaotic evolution than in collisionless

simulations. Price-Whelan et al. (2016) recently used a static triaxial

potential (not containing baryons) to represent the Milky Way and

study the presence of chaos in stellar streams resulting from tidal

debris. Also with an analytical static triaxial model, Maffione et al.

(2015) analysed the chaos onset time of particles in the stellar halo.

In this paper, we will employ the TD analytical model previously

developed in Manos & Machado (2014). It was derived from an

N-body simulation of a disc galaxy within a live halo (i.e. both the

stellar particles and the halo particles were responsive to their self-

consistent potential). In that simulation (Machado & Athanassoula

2010), interaction between disc and halo leads to the formation of

a strong bar. The measured parameters were used as input to the

analytical model, which was composed of three components: bar,

disc and halo. Among several simplifying assumptions, we point out

for example that the analytical bar is described as a simple ellipsoid.

While sufficient for most purposes (such as measuring quantities

within the bar region), an ellipsoid is not a faithful representation of

the actual shape of an evolving N-body bar. Nevertheless, the global

dynamics of the system were quite well reproduced, as indicated by

the comparison of the rotation curves of the N-body simulation and

of the analytical model.

Here, we extend our previous study, focusing on a detailed explo-

ration of the fractions of chaotic motion both in the disc and in the

halo. We aim to explore not merely the time evolution, but also the

spatial distribution associated with different morphological com-

ponents of the galaxy – namely the bar, the ring, the intermediate

region between the bar and the ring, and the outer disc; and in the

case of the halo, the inner versus outer parts. Let us also stress the

much richer orbital variety that the TD potential carries compared

to the rather simpler TI analytical potentials, or those derived from

snapshots of N-body simulations. That is, orbits that evolve with

such TD models can alternate both their spatial morphology and

their stability (chaotic or regular) in time. This emanates from the

change of stability of the main (but not only) families of stable (or

unstable) periodic orbits, as the main parameters of the potential

evolve simultaneously in a very complex manner in general. This

drastically affects the stability of their nearby phase space regimes

and the global stability in general (see e.g. Manos et al. 2013; Manos

& Machado 2014) as well as orbital shape transformation from one

type to another (e.g. a disc-like trajectory can change to a bar-like or

a ring-like, etc.). Both the changes of orbital shape and stability are

features that take place in a typical N-body simulation and hence it

can be very helpful to be able to study and understand these mor-

phological and dynamical transitions and their effect in the global

and local dynamics via such a simpler TD. Furthermore, once we

have characterized the spatially resolved fractions of chaotic motion

at given times, we can investigate the transitions between different

regimes of stability. Finally, we may use this information to trace

orbits back and uncover their common origins.

This paper is organized as follows. In Section 2, we summarize

how an analytical potential model was derived from an N-body

simulation, and we review the techniques of chaos detection which

we will be using for our studies here. We present the results for

the disc and for the halo in Sections 3 and 4, respectively, in which

we explore the evolution of the fractions of chaotic orbits and their

spatial distribution in time. In Section 5, we discuss and summarize

our findings.

2 M O D E L A N D T E C H N I QU E S

Before starting the description of the TD model and chaos detection

techniques, let us here mention that regarding this section we have

a two-fold aim: (i) to keep this article as self-contained as possible

by providing all the basic information and properties for the reader

to follow the upcoming results in the next sections, and (ii) to avoid

redundant repetition of all the details of the model/chaos detection

methods which can be found in (Manos & Machado 2014) for

someone more interested in how the model was conceived and

derived at first as well as more details and a short review on chaos

detection methods in general. Hence, in the next subsections, we

try to give a concise description of the model and the tools used

for the distinction between different dynamical states (regular from

chaotic) of a given orbit.

2.1 Analytical model from an N-body simulation

A TD analytical model was developed by Manos & Machado (2014)

to represent the gravitational potential of a barred galaxy. Here we

briefly summarize the main features of that model and the reader is

referred to that paper for further details.

To produce an astrophysically well-motivated model, we based

it on one of the simulations described in Machado & Athanassoula

(2010). We considered an N-body simulation of a disc galaxy em-

bedded in a live spherical dark matter halo. The mass of the disc was

Md = 5 × 1010M⊙, with an exponential density profile having ra-

dial scalelength Rd = 3.5 kpc and vertical scaleheight z0 = 0.7 kpc.

The dark matter halo had a Hernquist (1993) density profile and was

five times as massive as the disc. That simulation was a typically

representative collisionless simulation of a strongly barred galaxy

and it had been performed with 1.2 million equal-mass particles and

carried out for approximately one Hubble time.

Based on this N-body simulation, we then constructed an ana-

lytical model whose total gravitational potential was given by the

sum of the potentials of the disc, bar and halo as V = VD(t) + VB(t)

+ VH(t). All these components were TD, with parameters evolving

in accordance with the behaviours measured from the simulation.

Each individual component is represented as follows.

(a) The disc is expressed by a Miyamoto–Nagai potential

(Miyamoto & Nagai 1975):

VD(t) = −
GMD(t)

√

x2 + y2 + (A +
√

z2 + B2)2

, (1)
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where A and B are TD parameters and describe its horizontal and

vertical scalelengths while MD(t) is the mass of the disc. Note that

here ‘disc mass’, does not include the bar, i.e. it only refers to the

stellar component described by this axisymmetric potential.

(b) A triaxial Ferrers bar (Ferrers 1877), whose density is given

by

ρ(x, y, z) =
{

ρc(1 − m2)2 if m < 1,

0 if m ≥ 1,
(2)

where ρc = 105
32π

GMB(t)

abc
is the central density, MB(t) is the mass of

the bar, which changes in time, and m2 = x2

a2 + y2

b2 + z2

c2 , a > b > c

> 0, with a, b and c being the semi-axes of the ellipsoidal bar. The

corresponding bar potential is

VB(t) = −πGabc
ρc

3

∫ ∞

λ

du

�(u)
(1 − m2(u))3, (3)

where G is the gravitational constant (set to unity), m2(u) =
x2

a2+u
+ y2

b2+u
+ z2

c2+u
, �2(u) = (a2 + u)(b2 + u)(c2 + u), and λ

is the unique positive solution of m2(λ) = 1, outside of the bar

(m ≥ 1), while λ = 0 inside the bar. The analytical expression of the

corresponding forces are given in Pfenniger (1984). In our model,

the shape parameters (i.e. the lengths of the ellipsoid axes a, b and c

are) are also functions of time. By construction, the bar grows with

time in the TD analytical potential, as it does in the N-body simula-

tion. Hence, the bar mass increases at the expense of the remainder

of the disc mass. However, the total stellar mass remains always

constant: MB(t) + MD(t) = 5 × 1010M⊙.

(c) The spherical dark matter halo is given by a Dehnen potential

(Dehnen 1993):

VH(t) =
GMH

aH

×







− 1
2−γ

[

1 −
(

r
r+aH

)2−γ
]

, γ �= 2,

ln r
r+aH

, γ = 2.

(4)

where MH is the halo mass, aH is its scale radius and γ (within 0

≤ γ < 3) is a dimensionless parameter related to the inner slope.

Contrary to the masses of disc and bar, the halo mass is considered

constant in time. Nevertheless, the parameters aH and γ are TD. For

γ < 2, its finite central value is equal to (2 − γ )−1GMH/aH.

We then measured from the N-body simulation the following

parameters as a function of time: halo scalelength, halo inner slope,

disc vertical scalelength, disc horizontal scalelength, bar major axis,

bar intermediate axis, bar minor axis, bar mass and bar pattern speed.

Then we made fits to the time evolution of each of these parameters

and supplied those results into the analytical model.

To provide the reader with some quantitative details about the

model, here we give the approximate ranges of variation of the afore-

mentioned parameters, as they evolve since t = 0 until t = 12 Gyr.

The scale radius of the halo, aH, varies in the approximate range

from 3 to 6 kpc, while γ , the inner slope of the halo, varies roughly

from 0 to 1. The horizontal and vertical scalelengths of the disc,

A and B, respectively, go from 2.5 to 0.5 kpc, and from nearly 0

to 0.5 kpc. The bar mass grows from 0 to 3.3 × 1010 M⊙. Since

the stellar mass is constant, the remainder of the disc mass conse-

quently decreases by this same amount. The shape parameters of

the bar, a, b and c, start at nearly 0 and reach as much as 8, 2.8

and 1.9 kpc, respectively. We acknowledge that the actual shape of

the N-body bar is more complicated and thus ellipsoidal fits cannot

be guaranteed to give very good approximations at all times. This

is a convenient approach inasmuch as it allows the use of a triax-

ial Ferrers bar model. Furthermore, the mass encompassed by the

ellipsoid gives an acceptable estimate of the mass of the bar, and

the orientation of the major axis is quite well defined. Finally, as

the bar grows stronger, its pattern speed �b decreases greatly, from

more than 70 to nearly 10 km s−1 kpc−1. All of these parameters

– but particularly the bar mass, bar length and bar pattern speed –

undergo their most important changes during the first ∼2.5 Gyr of

the evolution.

With the above TD potential, we then construct a 3-degree-of-

freedom (dof) Hamiltonian function which governs the motion of a

star in a three-dimensional rotating barred galaxy:

H =
1

2

(

p2
x + p2

y + p2
z

)

+ V (x, y, z, t) − �b(t)(xpy − ypx). (5)

The x and y refer to the directions along the major axis and interme-

diate axis of the bar, respectively. The bar rotates around its short

z-axis. The canonically conjugate momenta are expressed as px, py

and pz, while V is the total TD potential, �b(t) represents the pattern

speed of the bar and H is the total energy of the orbit in the rotating

frame of reference.1

This procedure involved numerous idealized simplifications, such

as approximating the shape of the bar by an ellipsoid, etc. Never-

theless, these techniques worked in favour of the desired analytical

simplicity, and generated a model that was able to reproduce several

features with excellent agreement. For example, we found that the

rotation curves were well recovered by the analytical model, indicat-

ing the adequacy of the global dynamics. Furthermore, the study of

ensembles of orbits indicated that even morphological details were

quite well reproduced. More details and explanations regarding the

above TD potential and its parameters can be found in Manos &

Machado (2014).

2.2 Techniques for detecting and measuring amount of chaos

Let us here, for the sake of completeness, briefly recall how the two

main chaos detection methods used throughout the paper, namely

the Maximal Lyapunov Exponent (MLE) and the GALI method, are

defined, calculated and more precisely which numerical procedures

we are using (mainly for the GALI method for the goals of this

work).

Considering the Hamiltonian function (equation 5), we derive

the corresponding equations of motion together with the variational

equations (see Manos & Machado 2014 for more details). The

latter ones govern the evolution of one or more deviation vectors

w = (δx, δy, δz, δpx, δpy, δpz). The time evolution of such vectors

constitutes the basic ingredient for the calculation of the MLE and

the GALI chaos detection methods. For this purpose, one has to

(numerically) solve simultaneously both the equations of motion

and the variational equations (providing the time evolution of the

orbit and of the deviation vectors, respectively).

Lyapunov exponents

For the computation of the MLE, we follow the formulae and recipe

proposed in Benettin, Galgani & Strelcyn (1976), Contopoulos,

Galgani & Giorgilli (1978), Benettin et al. (1980) and we define λ1

as (see Skokos 2010 for a more recent description):

λ1 = lim
t→∞

σ1(t), (6)

1 That would be equivalent to the Jacobi constant for a TI Hamiltonian

function.
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where

σ1(t) =
1

t
ln

‖w(t)‖
‖w(0)‖

, (7)

is the so-called finite-time MLE, with ‖w(0)‖ and ‖w(t)‖ represent-

ing the Euclidean norm of the deviation vector at times t = 0 and

t > 0, respectively. In general, σ 1(t) tends to zero (following a power

law ∝ t−1) when the motion of an orbit is regular, and it converges

to a non-zero value when the motion is chaotic. Let us stress here

that in the case of conservative (TI) systems, things are to some

degree well distinguishable, i.e. orbits can be either periodic (stable

or unstable) or regular or chaotic (see e.g. Lichtenberg & Lieberman

1992) and hence the evolution and final value of the MLE can be

well associated with the true nature of the orbit. Moreover, there is

a further classification among the chaotic motion which has to do

with the ‘degree’ of dispersion or the time-scale of its manifestation

with respect to the system time-scale. Therefore, in the literature,

one may find many studies on the so-called weak or sticky compared

to ‘strongly’ chaotic motion. The former is characterized typically

by a smaller relatively positive MLE and confined (to some extent

and/or for a certain time interval) diffusion in the configuration

and/or phase space than the latter. In our previous article (Manos &

Machado 2014), we gave a brief overview of the recent literature

on these particular kinds of motion emerging in conservative (TI)

systems.

In this work, however, we consider a TD potential, a fact that

gives rise to richer dynamics and behaviour for our orbits governed

by it. The orbits can alternate (but not necessarily) their current dy-

namical state, from chaotic (or regular) to regular (or chaotic) over

several time intervals of their evolution. As described more thor-

oughly in Manos et al. (2013) and also later in Manos & Machado

(2014), in such a case, the MLE (equation 6) cannot be used to safely

characterize the asymptotic behaviour of an orbit due to strong fluc-

tuations caused be the dynamical transitions which take place as

the potential evolves in time. Nevertheless, we may show some-

times the MLE for a sample of orbits. The main reason behind this

is to get a more wide overview of the several dynamical transi-

tion taking place and examined by the main chaos detection tool

we will be using, i.e. the GALI (introduced in Skokos, Bountis &

Antonopoulos 2007).

The Generalized Alignment Index (GALI)

In this study, we use the GALI method of chaos detection in the same

manner as in our previous work (Manos & Machado 2014). For the

calculation of the GALI index of order k (GALIk), one has to follow

the evolution of 2 ≤ k ≤ N initially linearly independent deviation

vectors wi(0), i = 1, 2, . . . , k, where N denotes the dimensionality

of the systems’s phase space. GALIk is then defined (Skokos et al.

2007) as the volume of the k-parallelogram having as edges the k

unit deviation vectors ŵi(t) = wi(t)/‖wi(t)‖, i = 1, 2, . . . , k. This

volume can be expressed as the norm of the wedge product (denoted

by ∧) of these vectors:

GALIk(t) =‖ ŵ1(t) ∧ ŵ2(t) ∧ . . . ∧ ŵp(t) ‖, (8)

while here all the k deviation vectors are normalized but we keep

their directions intact. The general behaviour the GALI method (for

different models and types of stability) as well as its predictabil-

ity properties have been summarized recently in a review article

(Skokos & Manos 2016). In short, and for TI systems, the general

evolution of the GALIk(t) is the following: (1) for chaotic orbits, it

tends exponentially to zero with exponents that depend on the first

k LEs of the orbit, while (2) for regular orbits, it remains practically

constant and positive (if k is smaller or equal to the dimensionality

of the torus on which the motion occurs) or it decreases to zero

following a power-law decay (if k is larger to the dimensionality

of the torus on which the motion occurs; see e.g. Skokos, Boun-

tis & Antonopoulos 2007, 2008). Moreover, in Manos, Skokos &

Antonopoulos (2012), the behaviour and performance of the GALI

method was studied in the neighbourhood of invariant tori sur-

rounding periodic solutions in the vicinity of periodic orbits in TD

systems, where the role of sticky chaotic orbits and their diffusion

properties were addressed in particular as well.

Aiming to capture and describe different dynamical time win-

dows of the TD system, we calculate the GALIk as follows. Since

our study refers to three-dimensional configuration space (3-dof

system), we will be using k = 3 (i.e. three deviation vectors). The

reason for choosing the k-value to be equal to the number of dof

(as explained in several previous works; see e.g. Skokos et al. 2007;

Skokos & Manos 2016) is our goal to optimize the total compu-

tation time. This can be achieved by using the minimum number

of deviation vectors (required to be calculated via the variational

equations) which ensures the ‘safe’ distinction between chaotic and

regular motion at the same time. Then, by following the evolution

of the index in time, one will record exponential decay of the GALI3

for time intervals where the motion is chaotic, while in any the other

case, it will refer to a non-chaotic one.

As explained more in more detail in Manos et al. (2013) and

Manos & Machado (2014), the motion of an orbit in such a TD

potential can be rather complicated and keep varying its dynamical

stability from regular to chaotic and vice-versa when experiencing

the changes of the phase space while the parameters of the potential

change in time. So, if for example, the deviation vectors of an orbit

under study feel the chaotic dynamics of its regime for some time,

then the volume formed by them will (see the definition of the GALI

in equation 8) shrink exponentially to very small values and remain

small throughout the whole evolution unless one re-initializes the

deviation vectors and hence their volume. Only then, they will

be able to manifest the current new chaotic (again) or regular

dynamics.

In general, we perform two slightly different procedures in the

GALI3 calculation, namely: (i) whenever we are interested in un-

derstanding more global dynamical trends, like for example, how

the amount of chaotic motion of a given galaxy component varies

as a function of time in the TD system, we split the total time of

integration in four fixed time intervals and we re-initialize the de-

viation vectors only in the beginning of each one. We employ this

procedure for all the large samples of disc and halo orbits studied

later on. Hence, we consider such time windows where the GALI3

has enough time (with respect to the time-scale of the total sys-

tem evolution) to capture the chaotic or not motion of the orbit

under study; and (ii) whenever we wish to plot a sample of orbits

and show its detailed evolution in time, we let the GALI3 evolve

and whenever it reaches very small values (i.e. GALI3 ≤ 10−8) we

re-initialize its computation by taking again k = 3 new (always) ran-

dom orthonormal deviation vectors, which resets the GALI3 = 1.

We then allow these vectors to evolve under the current dynamics.

Let us stress that this procedure has been followed only in cases

where we wanted to depict individual orbits and show some special

characteristics of the motion accompanied by the chaos detection

tool (GALI and/or MLE). These calculations of the GALI3 were

done separately, i.e. we have rerun smaller samples of typical orbits

which illustrate several morphological and dynamical properties

associated with the general trends shown together.
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2.3 Testing the equilibrium of the initial conditions

In the following sections, we will study the behaviour of ensembles

of orbits and in particular, we will measure their percentages of

chaotic motion. This will be done by taking the coordinates of a

sample of initial conditions from the beginning of the N-body sim-

ulation, and then evolving them in the presence of the TD analytical

potential.

The analytical potential is a good but imperfect representation

of the actual potential experienced by the N-body particles. If the

samples of initial conditions are not exactly in equilibrium with

the analytical potential, this raises the concern that spurious chaotic

motion could be introduced merely due to this presumed mismatch,

particularly in the early stages of the evolution.

To investigate this possibility, we have performed the following

test. We selected a random sub-sample of 1000 disc initial condi-

tions from the beginning of the simulation. We then evolved them

under three distinct situations for 2.5 Gyr: (1) The initial conditions

are evolved directly into the TD analytical potential; (2) The initial

conditions are evolved in a frozen potential, i.e. in the TI analytical

potential fixed at t = 0; (3) The output of case 2 is now used as new

initial conditions in the presence of the TD analytical potential.

The evolution in the frozen potential of case 2 conserved energy

to within �E/E ∼ 9 × 10−9. One would expect this procedure to

dissipate eventual transients caused by lack of equilibrium. How-

ever, we measured the percentages of chaotic motion in the three

cases and found that they are essentially the same, differing by less

than 2.8 per cent points. For the purposes of our analyses, which

aim to investigate global dynamical trends, this margin is certainly

tolerable.

The similarity of results between cases 1 and 2 reinforces the

notion that there is no serious departure from equilibrium that might

compromise the results. Furthermore, the agreement between cases

1 and 3 indicates that the initial conditions can be run directly

into the TD analytical model, without prior application of step 2.

By running such tests, we were unable to find indications that the

percentages of chaotic motion could be severely overestimated.

Moreover, the initial conditions seem to be in equilibrium within

the potential to a fairly decent degree. For these reasons, we adopt

method 1 directly in the remainder of the paper.

In our approach, the potential varies drastically during this first

2.5 Gyr where one of the main model components, i.e. the bar,

starts to appear. This causes quite radical changes in the phase space

which in turn have a strong impact in the dynamical stability of the

periodic orbits surrounded by islands which may grow or shrink

and/or (dis)appear simultaneously in the course of time. Moreover,

how our initial conditions are distributed in the phase space plays a

significant role as well as their corresponding energy (see Manos &

Machado 2014, for more discussion). Hence, the most significant

reason for observing such a large fraction of chaotic motion in the

first epoch is due to these rather strong dynamical effects taking

place while the bar is forming.

3 T H E S T E L L A R D I S C

3.1 Fractions of chaotic motion

In Manos & Machado (2014), we had seen that the overall fraction

of chaotic motion in the disc decreases as the bar grows stronger.

Fig. 1 indicates the tight correlation between the decrease in chaos

and the growth of the bar, as indicated by the fraction of chaotic

motion – measured within the bar – as a function of relative bar

Figure 1. Fraction of chaotic motion within the bar as a function of relative

bar mass.

mass (i.e. the bar-to-disc mass ratio). One also notices that most of

the disappearance of chaos takes place during the first half of the

evolution, which is the period of more intense bar growth.

If bar growth is partially driving the rise of regular motion, the

question then arises as to the spatial distribution of regular versus

chaotic motions. In which regions of the stellar disc are regular and

chaotic motion predominantly found? Is the global rise of regularity

accompanied by some spatially localized increase of chaos? In order

to address such questions, we define four distinct morphological

regions: (i) the bar; (ii) the ring; (iii) the intermediate low-density

region between the bar and the ring, referred to as the gap region, for

brevity; and (iv) the outer disc. These regions are selected somewhat

arbitrarily (via visual inspection of the morphology), but they do

reflect distinctive structural components, regarding density, as can

be seen in the two upper rows of Fig. 2 with face-on and edge-on

views, where the ellipses used to define them are shown.2

To explore the spatially resolved evolution of chaos throughout

the stellar disc, we resort to the analysis of an ensemble of orbits.

From the N-body simulation, we select a sample of 1 × 105 disc

particles at the time t0 = 1.4 Gyr where the bar has already started

to be formed and starts growing from that point on. Then, their

coordinates are used as an ensemble of initial conditions to be

evolved in the presence of the TD analytical potential. We evolve

these orbits for 10 Gyr and study their dynamical behaviour. In

order to avoid confusion, from now on, we reset the t0 to be zero

(starting point of our simulations). Following Manos & Machado

(2014), we divide the total integration time in four intervals of

�t = 2.5 Gyr, re-initializing the GALI3 index at the beginning of

each window. The orbit is considered regular (non-chaotic) if its

GALI3 remains greater than 10−8 during a given time window; and

it is considered chaotic if it reaches GALI3 ≤ 10−8. In this manner,

we are able to compute fractions of chaotic motion within each

time window. Additionally, at a given instant in time, we can also

compute spatially resolved chaos fractions in different regions of

the disc.

A global picture of the spatial distribution of regular and chaotic

motion in the disc can be seen in the two bottom rows of Fig. 2,

which displays the face-on and edge-on views of the ensemble of

disc particles at the end of each time window, coloured by the

GALI3 index (being chaotic towards the blue, and regular towards

the yellow). Some major results are already noticeable even by

2 In Fig. 2 and in all other such projections, the particles and orbits are

displayed in the reference frame that rotates with the bar. Thus, the bar

major axis always lies along the direction of the x-axis.
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Figure 2. Upper rows: face-on and edge-on views of the ensemble of orbits at the end of each time window. Lower rows: face-on and edge-on views of

projected GALI3 indices for the disc ensemble. Chaotic orbits are those with GALI3 ≤ 10−8. The face-on views also display the ellipses used to define the

regions referred to as: bar, ring, gap and outer disc. Each frame is 20 kpc wide, and the particles are displayed in the reference frame that rotates with the bar.

eye. First, the striking decrease of chaos within the bar region

can be clearly seen. Secondly, even though the gap is a very low-

density region, it seems to hold a good portion of the chaotic orbits.

Thirdly, the outer disc – as well as the ring, to a degree – seem

quite dominated by regular motion. Finally, another outstanding

feature is the peanut-shaped view of the bar seen in the edge-on

projection (sometimes called X-shaped bulge). Remarkably, par-

ticles that depart considerably from the z = 0 plane are mostly

chaotic.

In order to quantify in more detail these results, we measure the

fraction of chaotic orbits as a function of time in each region (i.e.

at the end of each time window, we obtain the number of particles

having GALI3 ≤ 10−8 in a region divided by the total number of

particles within that region). The result is shown in Fig. 3. The frac-

tion of chaotic motion within the bar drops from nearly 40 per cent

to less than 10 per cent. The outer disc remains essentially regular,

with a non-zero but negligible appearance of chaos throughout the

evolution. The fact that the ring region undergoes an initial increase

in chaos can be ascribed in good measure to the edges of the bar. The

gap region displays some interesting behaviour. Between the first

and second time windows, the gap becomes depleted in terms of

total number of particles, but at the same time its fraction of chaotic

motion increases. From then on, it decreases, but the gap contin-

ues to be the region holding the highest local fraction of chaotic

motion in the disc. The large amount of chaotic motion seen in the

gap region is not unexpected. In fact, it is well known that orbits

that oscillate between the Lagrangian points L1 and L2 are unstable

and therefore the transition zone between the bar and the disc is
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Figure 3. Fraction of chaotic motion as a function of time, measured within

different regions of the disc. These regions are schematically indicated in

the right-hand panels, and more clearly detailed in Fig. 2.

expected to be chaotic (e.g. Athanassoula et al. 2009a; Harsoula &

Kalapotharakos 2009).

3.2 Morphology and evolution

In the analyses of the previous section, we considered the state

(chaotic or regular) of each particle at specific instants – the ends

of the four time windows. Now we will consider the changes of

state. For example, one given orbit that was reckoned to be regular

at the end of the evolution might have been chaotic at the beginning,

or it might have been continuously regular. In either case, where

did such particles originate? Do the particles that change dynamical

state (and those that do not) share a common locus at the beginning

of the evolution? To explore these issues, we will examine separately

the orbits that change dynamical behaviour and those that do not.

This will allow us, in a sense, to map the origins and the destiny of

regular and chaotic motion.

Let us start by selecting those orbits which are permanently reg-

ular (64.3 per cent) and those which are permanently chaotic (only

0.9 per cent). The remainder (34.8 per cent) change their nature at

least once during the evolution. Let us consider first those orbits

that do not undergo any change of regime throughout the evolution

(upper rows of Fig. 4).

Orbits that are permanently regular: as regards morphology, the

permanently regular ones are qualitatively unremarkable, in

the sense that they occupy almost any region of the galactic disc.

There is thus little qualitative distinction between them and the

entire ensemble and they merely map the normal evolution of the

galactic disc as a whole. The only noticeable structures that are not

quite covered by these orbits are the gap region, and, vertically, the

peanut. (Due to the method employed to create the initial conditions

in the N-body simulation of Machado & Athanassoula 2010, there

is a residual transient seen as a vague spiral pattern at t = 0 and it

subsides on a short time-scale.)

Orbits that are permanently chaotic: the permanently chaotic or-

bits, on the other hand, display peculiar features. They are tightly

restricted to the region of the bar, and partially to the gap. Indeed,

they spend nearly the entire evolution confined within this region.

There is not one single permanently chaotic orbit to be found in

the outer regions of the disc. At the instant t = 0, these particles

– whose future destiny is to be permanently chaotic – are initially

located within a reasonably well-defined ring, i.e. they are mostly

found within 2 kpc < r < 4 kpc.

For the remainder of the orbits, we will focus on two regimes:

those that start regular and end chaotic (6.1 per cent), and those

that start chaotic and end regular (20.8 per cent), regardless of the

intermediate states (i.e. the transitions in the second and third time

windows). Finally, there is a subset of orbits (7.9 per cent) that

do undergo two changes of regime, but nevertheless finish as they

started; these will be disregarded. Let us consider now the two

cases where the final state differs from the initial state (lower rows

of Fig. 4):

Orbits that begin regular and end chaotic: These start at t = 0

from a similar locus as the permanently chaotic, but here the ring is

slightly larger and more diffuse. This subset also includes some or-

bits very close to the origin (r < 0.5 kpc) in the beginning, which are

not present in the permanently chaotic case. The volume occupied

by these orbits contracts gradually, but they are more extended than

the permanently chaotic ones, encompassing the region of the gap

at later times as well. They are also vertically extended, being the

major contributors to the structure of the peanut. In fact, this is the

only subset of particles which significantly populates the peanut,

in the regions of about 2.5 kpc < |z| < 5 kpc of height. The gap

region, and mainly the peanut, are regions where chaos is impor-

tant. However, it is only the initially regular – and finally chaotic –

orbits that depart considerably from the plane. The orbits that were

already chaotic from the beginning do not visit such heights.

Orbits that begin chaotic and end regular: Interestingly, the initial

locus of this subset is approximately the complement of the previous

case. Here, the orbits at t = 0 occupy the region internal to the ring

defined by the previous case, while avoiding the very centre. In the

third row of Fig. 4, the purple points overlap green points in the

t = 2.5–10 Gyr frames. But in the t = 0 frame, the purple points fill

precisely an empty region. Subsequently, the initially chaotic orbits

evolve to be essentially part of the bar and end regular.

In Fig. 5, we show four representative examples of disc orbits

that illustrate the dynamical transitions described above. Note that

each row displays one given orbit whose time evolution has been

divided in four parts. In more detail, these orbits are a typical sam-

ple of initial conditions that correspond to the four regimes depicted

in Fig. 4. Each row here displays one orbit at four time windows,

coloured by time (from black to yellow at each window). The fifth

column shows the corresponding GALI3 evolution (note that here

GALI3 are re-initialized whenever they reach the value 10−8). Also

shown in the fifth column are the MLE σ 1. In the first row of

Fig. 5, one sees a permanently regular disc orbit (corresponding to

one of the cyan particles of Fig. 4). This orbit does not change its

regular dynamical nature, nor its morphology throughout the total

time evolution. Its GALI3 fluctuates around a positive value until

the end of the integration. In the second row of Fig. 5, we show

an example of a permanently chaotic orbit (corresponding to one

of the red particles of Fig. 4). Its GALI3 decays exponentially to

zero consecutive times, and its morphology is distinctively irregular

throughout. In the third row of Fig. 5, we plot an orbit that begins

regular and ends chaotic (corresponding to one of the green parti-

cles of Fig. 4). This orbit initially has a roughly circular morphology

but subsequently loses its regularity and becomes more elongated

along the direction of the bar. Note its GALI3 evolution: in the very

first part of the evolution, the index remains non-zero before start-

ing to decay exponentially to zero. This first drop is accompanied
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Figure 4. Evolution of regular/chaotic regimes separated in different configurations. Upper rows: face-on and edge-on vies of the orbits that are permanently

regular (cyan), and those that are permanently chaotic (red). Bottom rows: face-on and edge-on views of the orbits that start regular and end chaotic (green),

and those that start chaotic and end regular (purple).

by the onset of irregularity, clearly seen in the first panel of this

orbit, as the nearly circular motion (black at the beginning of the

time window) already starts giving way to an irregular morphology

(yellow at the end of the time window). Let us here recall that this

orbit was initially characterized as regular (non-chaotic to be more

accurate) when employing a global run where we were registering

the final value of the GALI3 at the end of each time window, and

from this, we derive the conclusion that at least for that time interval

the orbit exhibits more regular behaviour than chaotic (as its pro-

jections supports as well). However, in this figure, we always reset

the GALI3 only when it strictly crosses the threshold, as mentioned

before. Finally, in the fourth row of Fig. 5, we display an orbit that

begins chaotic and ends regular (corresponding to one of the purple

particles of Fig. 4). This orbits begins strongly chaotic, as indicated

by its GALI3, which drops exponentially to zero after only a rather

small number of iterations. Furthermore, its stability is changing

drastically in time and it is becoming gradually regular; its GALI3

at the last part of the evolution fluctuates around a positive value.

Moreover, from a morphological point of view, it is being trans-

formed into a bar orbit under the effect of the TD potential. In the

fourth column of Fig. 5, besides the GALI3, we also display the

MLE in lin-log scale (grey). For the two upper panels, things are

quite clear: for the permanently regular orbit (first row) the MLE

decays to zero following a power law (which is even more clear in

a log–log scale, not shown here) while for the permanently chaotic

(second row) it tends to a positive value. However, whenever an

orbit experiences more complex dynamical transitions, like the or-

bits shown in the third and fourth rows, the MLE, as an averaging

measure, faces several difficulties, described also in Manos et al.

(2013); Manos & Machado (2014). Starting with the fourth row

(an orbit that begins chaotic and ends regular), we may see that

the MLE does not have sufficient time to capture the first chaotic

period of the orbit. In the third row (an orbit that begins regular and

ends chaotic), at first glance, the MLE does not seem to describe

accurately the last half or so of the orbital evolution, since in the

lin-log scale it is not clear that there is a tendency to approach a pos-

itive value. For this reason, we have checked its evolution in log–log

scale (not shown here), where a change in the slope becomes clearer

as it approaches a non-zero value, indicating the dynamical change

of the orbit. However, it is already evident that one should integrate
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Figure 5. Typical examples of disc orbits. Each row displays one orbit at four time windows, coloured by time (from black to yellow at each window). The

fifth column shows the corresponding GALI3 evolution, as well as the MLE σ 1. First row: a permanently regular orbit. Second row: a permanently chaotic

orbit. Third row: an orbit that begins regular and ends chaotic. Fourth row: an orbit that begins chaotic and ends regular. The orbits are displayed in the reference

frame that rotates with the bar.

for much longer periods to get a convincing information from

the MLE.

Let us here discuss into more detail these orbits that start regular

and end chaotic (green points in Fig. 4). These orbits seem to pop-

ulate eventually (and mostly) the gap region around the Lagrangian

L1 and L2 points. Thus, it is a reasonable to wonder whether there is a

relation between this transition to chaoticity with the stickiness that

characterizes this region. As a general and typical trend, when ob-

serving the evolution of a sticky chaotic orbit, one sees a trajectory

that has a regular-like morphology for some time before eventu-

ally revealing its chaotic nature (when entering a strongly chaotic

regime). Typically the morphology of these orbits is preserved, in

the sense that e.g. disc orbits remain disc orbits and the bar ones

remain bar orbits, but surely with a rather different rate of diffusion

in configuration and phase space in the two different epochs. In our

case, a large fraction of ‘regular → chaotic’ orbits (green points in

Fig. 4) are trajectories that additionally transform their spatial mor-

phology (mostly from disc to bar orbits). Such a typical example

is given in Fig. 5 (third row), where an initially almost spherical

(regular) disc orbit gradually changes to a bar (chaotic) orbit. This

transition is mostly due to the emergence of the bar component in

the potential as the time evolves and it does not seem to be strongly

related to stickiness effects as in other cases studied broadly in the

literature. Hence, a lot of the transitions from chaotic to regular

and/or vice-versa are due to the changes of the stability of certain

regions in the phase space.

In order to investigate further the morphological properties of

these different dynamical transitions, we then examined the dis-

tribution of each group of orbits as a function of the positions3

in terms of the dimensionless quantity m2 = (x/a)2 + (y/b)2 +
(z/c)2, meaning that particles within the bar have m < 1. The three

shape parameters a, b and c are TD and are looked up at each de-

sired instant to compute m. In the top row of Fig. 6, we show the

histograms of such positions of disc particles for the permanently

regular (cyan) and permanently chaotic (red). In the bottom row,

we plot the corresponding histograms for the particles that begin

3 We have also inspected these distributions in terms of the spherical radius

r or cylindrical radius R but they are less clear regarding the bar region.
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Figure 6. Histograms of positions of disc particles in terms of the dimensionless quantity m2 = (x/a)2 + (y/b)2 + (z/c)2, where a, b and c give the shape of

the bar at each time. Particles within the bar have m < 1. Top row: permanently regular (cyan) and permanently chaotic (red). Bottom row: particles that begin

regular and end chaotic (green) and particles that begin chaotic and end regular (purple).

regular and end chaotic (green) and particles that begin chaotic and

end regular (purple).

Starting with the top row, we notice that the absolute number

of permanently chaotic orbits is small, and that they are located

essentially within the bar or near its edges, at least after t = 2.5 Gyr.

Surely, in the same ranges, one may find far more regular mo-

tion as well; yet they are more widely spread in the several dis-

tances compared to the chaotic ones. The most striking feature of

Fig. 6 is the fact that the purple histograms (chaotic → regular)

are almost completely confined to the bar region (m < 1) at all

times after t = 2.5 Gyr. The green histograms (regular → chaotic)

show a tendency in the same direction, but less pronounced, and

there are far fewer such orbits in absolute numbers. Complement-

ing the information provided by Figs 3 and 4, these histograms offer

a more quantitative overview regarding the spatial distribution of

these types of motion, highlighting not only the preferred locations

where each type of regime is to be found, but also their relative

contributions in number of particles. For example, the comparisons

of the green and purple histograms confirm the visual impression of

Fig. 4 – that the finally regular orbits become more confined and the

finally chaotic becomes more spread out – but also displays quan-

titatively that the finally regular are far more prevalent. Also, we

see that the initially chaotic and the permanently chaotic types both

spawn from roughly the same region, although the latter is more

rare.

4 T H E DA R K M AT T E R H A L O

Having characterized the evolution of the fraction of chaotic motion

in the disc, we now turn to the dark matter halo, to evaluate how

halo orbits behave in the presence of an evolving barred galaxy.

Analogously to the disc analysis, we now select a sample of

2 × 105 halo particles from the N-body simulation. This en-

semble is also evolved in the presence of the TD analytical po-

tential, and we use the GALI3 index to study the fraction of

chaotic motion in the halo (in a similar manner as we did for the

disc particles), exploring both the time evolution and the spatial

distribution.

4.1 Inner halo

The ensemble of halo initial conditions behave as massless test par-

ticles and cannot be expected to mimic exactly the self-consistent

gravitational evolution of the N-body simulation. Nevertheless,

global morphological features are reproduced with quite good

agreement. That was also the case for the ensemble of disc ini-

tial conditions, as shown in Manos & Machado (2014), and it is

one of the indications that our TD analytical model provides a re-

markably useful approximation of the galactic potential, for several

purposes.

A distinctive halo feature which is reproduced is the so-called

halo bar, (Athanassoula 2005, 2007; Machado & Athanassoula

2010), also called the dark matter bar (Colı́n, Valenzuela & Klypin

2006). In N-body simulations, the inner halo of strongly barred

galaxies is found to become prolate. This halo bar is a structure

that rotates together with the disc bar, but it is not as strong and

not as elongated as its stellar counterpart. We found that this pecu-

liar feature also arose from the ensemble of halo initial conditions

in the presence of our analytical model. One should bear in mind

that the halo analytical potential remains spherically symmetric by

construction throughout the evolution. The bar potential is thus

responsible for inducing the prolateness of the inner halo orbits.

Here we will characterize the halo bar, using the ensemble of

initial conditions and analysing their morphological evolution. The

reader should notice that in the present context, when we speak of

‘the halo’ and its shape, we mean the ensemble of orbits within

the analytical potential. To quantify the shape of the inner halo,

we measure the axis ratios b/a (intermediate-to-major) and c/a

(minor-to-major) as a function of distance from the centre (along

the major axis). This is done employing the same techniques as in

Machado & Athanassoula (2010): we compute the axis ratios using

the eigenvalues of the inertia tensor. To avoid the bias of spherical

shells, the particles are sorted as a function of local density, and the

shapes are measured inside density bins containing equal number

of particles. In this manner, the spheroidal bins naturally follow the

shapes of the isodensity surfaces. The resulting shape profiles are

shown in Fig. 7(a). The outer shape or the halo (certainly beyond

r � 10 kpc) is globally spherical, as one would expect; both axis
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Figure 7. Shapes of the ensemble of halo orbits at different times: (a) Axis

ratios b/a and c/a as a function of distance from the centre; (b) Relative

amplitude of the m = 2 Fourier component of the mass distribution projected

on the x–y and x–z planes.

ratios reach values of 0.95–1, i.e. as spherical as possible within the

resolution set by the particle number. In the inner region, however,

b/a drops to ∼0.8–0.85 and c/a to ∼0.6–0.75. This means a halo

bar which is non-circular on the plane of the disc, and even more

flattened in the vertical direction. The relatively steep drops take

place at around ∼5 kpc, which could be regarded as the approximate

size of the halo bar.

Complementary, another way of quantifying the shape of the in-

ner halo is to use the Fourier components of the bi-dimensional

mass distribution, namely the relative amplitude of the m = 2 com-

ponent. This is often used to quantify bar strengths, as it is quite

sensitive to departures from axisymmetry. In Fig. 7(b), we show this

relative A2 amplitude measured by projecting the particles on the

(x, y) plane, or else on the (x, z) plane. The amplitudes are surely

much less pronounced than those of stellar bars, but the elongated

and flattened morphology of the halo bar is clearly measurable, in-

dicating its bar-like nature. Here we see that ∼5 kpc marks roughly

mid-height between the A2 peak and the first minimum, so to speak.

The purpose of characterizing the halo bar is two-fold. First, it

helps underscore the efficacy of the TD analytical model developed

in Manos & Machado (2014), which is able to recover even such

a detailed morphological feature that was not deliberately built

into the model. Secondly, it provides a well-motivated distinction

between ‘inner’ and ‘outer’ halo in the present context. Contrary to

the stellar disc, the halo has no obvious morphological substructures,

but the existence of the halo bar suggests a natural separation. We

proceed to study the fractions of chaotic motion in the halo as a

whole, and within the inner and outer parts.

4.2 Fractions of chaotic motion in the halo

In Fig. 8, we show four snapshot maps where the colour at each point

indicates the value of the GALI3 (at a given momentary position) for

the halo ensemble, at the end of each time window. Chaotic orbits are

again those with GALI3 < 10−8. Each frame here is 20 kpc wide.

The measurement of the GALI3 indices at the end of each time

window (namely at t = 2.5, 5, 7.5 and 10 Gyr) allows us to obtain

the fraction of chaotic motion as a function of time. Furthermore,

we are able to measure this fraction with spatial resolution. Fig. 8

thus displays the prevalence of chaotic or regular orbits in the halo at

four instants: here chaos is represented by the blue (darker) colours.

From this figure, we can already discern the two main results: (i)

chaos decreases globally in the halo and (ii) chaos is only ever

dominant in the inner region (r < 5 kpc).

Now let us quantify these halo trends in more detail. For brevity,

we refer here to the expressions ‘inner’ and ‘outer’ halo in the sense

defined in Section 4.1, i.e. ‘inner’ meaning essentially the region

where the halo bar is found, and ‘outer’ being all the remainder

of the halo, which is nearly spherical. Fig. 9(a) displays the radial

profile of the fraction of chaotic motion at the end of each time

window. We see that at any given time, considerably more chaos

is to be found in the inner halo than in the outer halo. Within r <

5 kpc, chaotic orbits even dominate at first. The time evolution of

this fraction is shown in Fig. 9(b). In the outer halo, the amount of

chaotic motion is always low (∼ 20 per cent) and decreases slightly

with time. If the halo is considered as a whole, the global fraction

of chaotic motion decreases from 30 to 20 per cent, approximately.

But the most pronounced evolution is seen in the region of the

halo bar: from nearly 60 to 30 per cent. So the overall result is

that the global fraction of chaotic motion in the halo decreases

monotonically with time, and at any given radial range. Another

result to be underscored is that in the inner halo, chaotic motion

initially dominates over regular motion, i.e. more than 50 per cent,

which was never the case in any of the disc regions.

The fact that chaotic orbits dominate in the inner halo is consistent

with the findings of Valluri et al. (2013), using a halo extracted from

a cosmological hydrodynamical simulation. It would be interesting

to understand whether the large percentages of chaotic orbits are due

to scattering by the TD bar potential (e.g. see Price-Whelan et al.

Figure 8. Projected GALI3 values (in logarithmic scale) for the halo ensemble, at the end of each time window. Chaotic orbits are those with GALI3 < 10−8.

Each frame is 20 kpc wide.
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Figure 9. Fraction of chaotic motion in the halo: (a) as a function of radius

for different times, and (b) as a function of time for different regions.

2016 on the effect of a TD bar on the Orphiuchus tidal stream) or if it

is due to the deeper central potential. First, to verify that our method

does not overestimate the initial amount of chaos, we performed the

same test described in Section 2.3 also to a random sub-sample of

1000 halo initial conditions. The evolution of this sub-sample in

a frozen potential conserved energy to within �E/E ∼ 4 × 10−5.

Comparing the percentages of chaotic motion in this case, we found

that in the frozen potential, there was marginally less chaos (by 3.2

percentage points). That might lead us to speculate that the greater

amount of chaotic motion is indeed due to the time-dependence of

the bar potential. Furthermore, the first time window may witness

more chaotic motion because that is the period during which all

the potential parameters undergo their most intense variations. But

to disentangle the role of the central concentration, a systematic

comparison of models would be needed, which is beyond the scope

of this paper.

4.3 Sample of halo orbits

From the ensemble used to study the halo, we select three orbits to

illustrate characteristic behaviours. In Fig. 10, each row corresponds

to one orbit, and each orbit is shown at four time windows, coloured

by time (from black towards yellow at each window). The fifth

column exhibits the GALI3 and the MLE evolution of each orbit.

Note that here, the GALI3 are reset once they reach 10−8, being then

considered chaotic. The first row of Fig. 10 shows an example of an

orbit that was chaotic at first, but then becomes regular later. This is

seen both by the orbital shape itself and by the GALI3 drop in the first

time window. This orbit becomes part of the halo bar, as evidenced

by its orientation, size and shape. In the fourth time window, there

is a mild backslide away from regularity, again discernible both

in the morphology and in the GALI3, but this momentary relapse

is insufficient to reach the threshold of being classified as chaotic.

In the second row of Fig. 10, we present an example of an orbit

that is permanently chaotic, since its morphology is consistently

irregular and its GALI3 drops repeatedly. Then, a typical orbit that

is permanently regular, being even roughly circular and its GALI3

never drops significantly, can be found in the third row of Fig. 10.

Notice that the first and second rows are orbits from the inner part

of the halo, while the third example is an orbit from an outer region

(r ∼ 10 kpc), where the halo is essentially spherical.

One may notice that the dynamical transitions observed in this

sample of halo orbits, shown in Fig. 10, are generally simpler com-

pared to those disc orbits shown in Fig. 5, i.e. they maintain their

dynamical stability for most of the time integration. That makes

it easier for the MLE to describe accurately the chaotic or regular

nature of this orbits in the TD potential. Thus, here we can see a

good match between the GALI3 and MLE.

5 SU M M A RY A N D C O N C L U S I O N S

We employed the TD analytical model developed in Manos &

Machado (2014) to perform a detailed analysis of the evolution

of chaotic and regular orbits in a barred galaxy. The galaxy model is

represented by a gravitational potential composed of three compo-

nents – disc, bar and halo – whose parameters are all fully TD and

were derived from a self-consistent N-body simulation. By directly

following the dynamical evolution of ensembles of orbits within

the analytical potential, we were able to calculate the fractions of

chaotic and regular motion resolved in both time and space. With

this information we could evaluate not only the global trends in

time, but also across several regions of the galactic disc and of

the halo, associating them with distinct morphological features. We

scrutinized the different changes of regime during the evolution,

tracing the types of orbits back to their common origins.

Our previous study of the disc was now extended by associating

simultaneously the dynamical and the morphological state of orbits.

The time-dependence of the analytical model ensures rather realis-

tic dynamical transitions similar to an N-body simulation, i.e. bar

formation and growth, development of a ring, a dynamical halo, etc.

At the same time, this setup serves ideally to apply the GALI chaos

detection method and in this way to determine the current chaotic (or

otherwise) dynamical state of any given orbit at a fixed time interval,

something that it is extremely hard to do in an N-body simulation.

Moreover, it has the advantage over a derived frozen potential from

an N-body simulation, from the point of view that it incorporates

smooth dynamical evolution via its TD parameters and allows us to

follow the both dynamical and morphological transitions.

We analysed the fractions of chaotic motion within different mor-

phological components of the disc, namely the bar, the ring, the gap

region between them, and the outer disc. Then we also investigated

the origins of four different regimes of transitions between dynami-

cal stability: those orbits that are permanently regular, those that are

permanently chaotic, those that start regular and end chaotic, and

those that start chaotic and end regular. Here we summarize these

results pertaining to the disc:

(i) We found that the overall trend in time is a global decrease of

chaotic motion in the disc as a whole. In the bar region, the decrease

is the most intense and it is monotonic, going from nearly 40 to less

than 10 per cent of chaotic motion. The outer disc is overwhelmingly

dominated by regular motion throughout the entire evolution, and

its fraction of chaotic motion never exceeds 2 per cent.

(ii) The ring and the gap show more complicated evolutions. The

gap region is most peculiar in the sense that it is a very low-density

region, but although it is sparsely populated, its fraction of chaotic
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Figure 10. Examples of halo orbits. Each row displays one orbit at four time windows, coloured by time (from black to yellow at each window). The fifth

column shows the corresponding GALI3 evolution, as well as the MLE σ 1. Notice the different spatial scales: the top and middle rows are orbits from the

innermost parts of the halo, while the bottom row is an orbit from a region (r ∼ 10 kpc) where the halo is essentially spherical. The orbits are displayed in the

reference frame that rotates with the bar.

motion is the highest seen in the disc, reaching more than 40 per cent

at one point. The ring also differs from the rest of the disc regions

because it undergoes a net increase of chaotic motion, locally.

(iii) Regarding the orbits that do not change their dynamical state

during the evolution, we saw that permanently regular orbits may

be found nearly anywhere in the disc. The permanently chaotic

orbits, however, are only found within the bar, and their origin can

be traced back to a confined annular region at t = 0, whose average

radius is comparable to the future length of the bar.

(iv) Regarding the orbits that do change their dynamical state

between the first and the last time windows, we see that the ones

that start chaotic and end regular occupy similar regions as the

permanently chaotic ones. This means that there is an annular region

of initially chaotic particles that will migrate to constitute the bar,

the majority of which will ultimately become regular. Finally, the

orbits that begin regular and end chaotic can be traced back at t = 0

to a less well-defined region outside the aforementioned annulus,

but not extending as far as the outer disc. They also contribute to the

bar, but their most noticeable feature is that these are the only kinds

of orbits that significantly depart vertically from the z = 0 plane,

populating the so-called peanut, when the bar is viewed edge-on.

Apart from the study of the disc, we also investigated the presence

of chaotic and regular motion in the dark matter halo. For this, we

similarly used an ensemble of halo orbits evolving in the presence

of the TD analytical model. Now we summarize the main results

regarding the halo.

(i) We found that our analytical model was even able to recover

the so-called halo bar, a prolate structure of the inner halo. This

morphological feature is known to arise in self-consistent N-body

simulations of strongly barred galaxies. Here, the halo potential

itself remains spherically symmetric during the entire evolution, and

yet the bar potential is able to induce the halo orbits to evolve into

the shape of a halo bar. Like its N-body counterpart, the halo bar that

developed in our ensemble of halo orbits is also less elongated and

not as strong as the stellar bar itself. This reinforces the robustness

of the analytical model, because the halo bar is quite a detailed

morphological feature that had not been deliberately built into the

model.

(ii) At any given time, chaotic motion is mainly expected to be

found in the inner rather in the outer parts of the halo. Remarkably,

the inner halo (r < 5 kpc) is initially dominated by chaotic motion

(as much as 70 per cent chaotic). At later times, regular motion

prevails at all radii, but it is still more present in the inner part. Also

worthy of note is the fact that such high fraction of chaotic motion

was not seen in any of the disc regions.

(iii) Globally, the time evolution of the fraction of chaotic motion

in the halo is in the sense of decreasing monotonically, in any radial

range. As with the disc, the tendency is for the halo orbits to become

progressively more regular.

Our analytical model has the advantage of offering a fully TD and

astrophysically realistic galaxy model, as indicated by the fact that

it was successful in recovering several dynamical and morphologi-

cal features of a barred galaxy. This work focused on one particular
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galaxy simulation, but the method may be extended to different

galaxy types, taking as input the results of other N-body simula-

tions. Here we focused on a strongly barred galaxy to maximize

the effects we wished to explore. Clearly a natural development

would be to compare the present results with alternative galaxy

models of varying bar strengths, disc masses, halo profiles, etc.

Such a systematic exploration would reveal to which parameters

the dynamical stability is most sensitive. For example, given the

high fraction of chaotic motion found in the inner halo, the question

arises as to the role of the dark matter profile in determining that be-

haviour. One might explore whether a more cuspy inner halo would

help or rather hinder the rise of regular motion. A further develop-

ment would be the inclusion of models containing gas (Patsis et al.

2009) and star formation. To this end, the hydrodynamical simu-

lations of Athanassoula, Machado & Rodionov (2013) would be

ideally suited, since they already offer a systematic grid of models

for galaxies with different halo triaxialities and different initial gas

fractions, thus resulting in a variety of bar strength evolutions. More

broadly, models derived from a fully cosmological hydrodynamical

simulation of galaxy formation would offer an even more realistic

scenario (e.g. Valluri et al. 2013) than the usual models of isolated

galaxies. Finally, a specific issues that merits further analysis is the

behaviour of the X-shaped (or boxy/peanut) bulge (Patsis & Kat-

sanikas 2014a,b), particularly in light of the recent interest in the

kinematics and structure of the Milky Way’s own bulge (Saito et al.

2011; Zoccali et al. 2014).

The methods employed here have proven quite useful to the

dynamical analyses of chaotic and regular motion, but this analytical

approach is potentially suitable to various other applications in

orbital studies.
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Romero-Gómez M., Masdemont J. J., Athanassoula E., Garcı́a-Gómez C.,
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