000840321 001__ 840321
000840321 005__ 20220930130136.0
000840321 0247_ $$2doi$$a10.1371/journal.pone.0187911
000840321 0247_ $$2Handle$$a2128/16001
000840321 0247_ $$2WOS$$aWOS:000416291900022
000840321 0247_ $$2altmetric$$aaltmetric:29594704
000840321 0247_ $$2pmid$$apmid:29176853
000840321 037__ $$aFZJ-2017-07863
000840321 082__ $$a500
000840321 1001_ $$0P:(DE-Juel1)166123$$aLiu, Liqing$$b0
000840321 245__ $$aAge-related changes in oscillatory power affect motor action
000840321 260__ $$aLawrence, Kan.$$bPLoS$$c2017
000840321 3367_ $$2DRIVER$$aarticle
000840321 3367_ $$2DataCite$$aOutput Types/Journal article
000840321 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511946472_9733
000840321 3367_ $$2BibTeX$$aARTICLE
000840321 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840321 3367_ $$00$$2EndNote$$aJournal Article
000840321 520__ $$aWith increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum) as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC). This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.
000840321 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000840321 588__ $$aDataset connected to CrossRef
000840321 7001_ $$0P:(DE-Juel1)164124$$aRosjat, Nils$$b1
000840321 7001_ $$0P:(DE-Juel1)164123$$aPopovych, Svitlana$$b2
000840321 7001_ $$0P:(DE-Juel1)161286$$aWang, Bin$$b3
000840321 7001_ $$0P:(DE-Juel1)167150$$aYeldesbay, Azamat$$b4
000840321 7001_ $$0P:(DE-HGF)0$$aToth, Tibor I.$$b5
000840321 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b6
000840321 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b7
000840321 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b8
000840321 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b9$$eCorresponding author
000840321 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0187911$$gVol. 12, no. 11, p. e0187911 -$$n11$$pe0187911 -$$tPLoS one$$v12$$x1932-6203$$y2017
000840321 8564_ $$uhttps://juser.fz-juelich.de/record/840321/files/journal.pone.0187911.pdf$$yOpenAccess
000840321 8564_ $$uhttps://juser.fz-juelich.de/record/840321/files/journal.pone.0187911.gif?subformat=icon$$xicon$$yOpenAccess
000840321 8564_ $$uhttps://juser.fz-juelich.de/record/840321/files/journal.pone.0187911.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840321 8564_ $$uhttps://juser.fz-juelich.de/record/840321/files/journal.pone.0187911.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840321 8564_ $$uhttps://juser.fz-juelich.de/record/840321/files/journal.pone.0187911.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840321 8564_ $$uhttps://juser.fz-juelich.de/record/840321/files/journal.pone.0187911.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840321 8767_ $$8PAB212526$$92017-12-28$$d2018-01-08$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-17-15485$$zUSD 1495,-
000840321 909CO $$ooai:juser.fz-juelich.de:840321$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166123$$aForschungszentrum Jülich$$b0$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164124$$aForschungszentrum Jülich$$b1$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164123$$aForschungszentrum Jülich$$b2$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161286$$aForschungszentrum Jülich$$b3$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167150$$aForschungszentrum Jülich$$b4$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b6$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b7$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b8$$kFZJ
000840321 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b9$$kFZJ
000840321 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000840321 9141_ $$y2017
000840321 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840321 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000840321 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000840321 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840321 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000840321 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2015
000840321 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000840321 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000840321 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840321 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840321 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840321 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840321 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840321 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840321 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840321 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840321 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000840321 9801_ $$aFullTexts
000840321 980__ $$ajournal
000840321 980__ $$aVDB
000840321 980__ $$aUNRESTRICTED
000840321 980__ $$aI:(DE-Juel1)INM-3-20090406
000840321 980__ $$aAPC