000840324 001__ 840324
000840324 005__ 20210129231815.0
000840324 0247_ $$2doi$$a10.1093/gigascience/gix084
000840324 0247_ $$2Handle$$a2128/16064
000840324 0247_ $$2WOS$$aWOS:000412397500009
000840324 0247_ $$2altmetric$$aaltmetric:24264812
000840324 0247_ $$2pmid$$apmid:29020748
000840324 037__ $$aFZJ-2017-07866
000840324 082__ $$a570
000840324 1001_ $$0P:(DE-HGF)0$$aAtkinson, Jonathan A.$$b0$$eFirst author
000840324 245__ $$aCombining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies
000840324 260__ $$aLondon$$bBiomed Central$$c2017
000840324 3367_ $$2DRIVER$$aarticle
000840324 3367_ $$2DataCite$$aOutput Types/Journal article
000840324 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512371879_4569
000840324 3367_ $$2BibTeX$$aARTICLE
000840324 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840324 3367_ $$00$$2EndNote$$aJournal Article
000840324 520__ $$aGenetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping.
000840324 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000840324 588__ $$aDataset connected to CrossRef
000840324 7001_ $$0P:(DE-Juel1)171180$$aLobet, Guillaume$$b1$$eCorresponding author
000840324 7001_ $$0P:(DE-HGF)0$$aNoll, Manuel$$b2
000840324 7001_ $$0P:(DE-HGF)0$$aMeyer, Patrick E.$$b3
000840324 7001_ $$0P:(DE-HGF)0$$aGriffiths, Marcus$$b4
000840324 7001_ $$0P:(DE-HGF)0$$aWells, Darren M.$$b5$$eCorresponding author
000840324 773__ $$0PERI:(DE-600)2708999-X$$a10.1093/gigascience/gix084$$gVol. 6, no. 10, p. 1 - 7$$n10$$p1 - 7$$tGigaScience$$v6$$x2047-217X$$y2017
000840324 8564_ $$uhttps://juser.fz-juelich.de/record/840324/files/gix084.pdf$$yOpenAccess
000840324 8564_ $$uhttps://juser.fz-juelich.de/record/840324/files/gix084.gif?subformat=icon$$xicon$$yOpenAccess
000840324 8564_ $$uhttps://juser.fz-juelich.de/record/840324/files/gix084.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840324 8564_ $$uhttps://juser.fz-juelich.de/record/840324/files/gix084.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840324 8564_ $$uhttps://juser.fz-juelich.de/record/840324/files/gix084.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840324 8564_ $$uhttps://juser.fz-juelich.de/record/840324/files/gix084.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840324 909CO $$ooai:juser.fz-juelich.de:840324$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000840324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171180$$aForschungszentrum Jülich$$b1$$kFZJ
000840324 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000840324 9141_ $$y2017
000840324 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840324 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000840324 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000840324 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840324 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000840324 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGIGASCIENCE : 2015
000840324 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGIGASCIENCE : 2015
000840324 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000840324 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000840324 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840324 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840324 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840324 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840324 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000840324 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840324 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000840324 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840324 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840324 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000840324 980__ $$ajournal
000840324 980__ $$aVDB
000840324 980__ $$aUNRESTRICTED
000840324 980__ $$aI:(DE-Juel1)IBG-3-20101118
000840324 9801_ $$aFullTexts