000840329 001__ 840329
000840329 005__ 20240711085619.0
000840329 0247_ $$2doi$$a10.1039/C7SE00422B
000840329 0247_ $$2WOS$$aWOS:000424001700007
000840329 037__ $$aFZJ-2017-07871
000840329 082__ $$a660
000840329 1001_ $$0P:(DE-HGF)0$$aGeier, Sebastian$$b0
000840329 245__ $$aA wet-chemical route for macroporous inverse opal Ge anodes for lithium ion batteries with high capacity retention
000840329 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2018
000840329 3367_ $$2DRIVER$$aarticle
000840329 3367_ $$2DataCite$$aOutput Types/Journal article
000840329 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518528363_2213
000840329 3367_ $$2BibTeX$$aARTICLE
000840329 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840329 3367_ $$00$$2EndNote$$aJournal Article
000840329 520__ $$aGermanium holds great potential as an anode material for lithium ion batteries due to its high specific capacity and its favorable properties such as good lithium ion diffusivity and electronic conductivity. However, the high cost of germanium and large volume changes during cycling, which lead to a rapid capacity fading for bulk Ge materials, demand for nanostructured thin film devices. Herein we report the preparation and electrochemical properties of thin films of porous, inverse opal structured Ge anodes obtained via a simple, up-scalable wet-chemical route utilizing [Ge9]4− Zintl ions. In the absence of conductive additives, they show high initial capacities of >1300 mA h g−1 and promisingly high coulombic efficiencies of up to 99.3% and deliver over 73% of their initial capacity after 100 cycles when cycled vs. metallic lithium. In contrast to many other porous structured Ge electrodes, they show very little to almost no capacity fading after an initial drop, which makes them promising candidates for long life applications.
000840329 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000840329 588__ $$aDataset connected to CrossRef
000840329 7001_ $$0P:(DE-HGF)0$$aJung, Roland$$b1
000840329 7001_ $$0P:(DE-HGF)0$$aPeters, Kristina$$b2
000840329 7001_ $$0P:(DE-HGF)0$$aGasteiger, Hubert A.$$b3
000840329 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b4$$ufzj
000840329 7001_ $$00000-0001-9460-8882$$aFässler, Thomas F.$$b5$$eCorresponding author
000840329 773__ $$0PERI:(DE-600)2882651-6$$a10.1039/C7SE00422B$$gp. 10.1039.C7SE00422B$$p85-90$$tSustainable energy & fuels$$v2$$x2398-4902$$y2018
000840329 8564_ $$uhttps://juser.fz-juelich.de/record/840329/files/c7se00422b.pdf$$yRestricted
000840329 8564_ $$uhttps://juser.fz-juelich.de/record/840329/files/c7se00422b.gif?subformat=icon$$xicon$$yRestricted
000840329 8564_ $$uhttps://juser.fz-juelich.de/record/840329/files/c7se00422b.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840329 8564_ $$uhttps://juser.fz-juelich.de/record/840329/files/c7se00422b.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840329 8564_ $$uhttps://juser.fz-juelich.de/record/840329/files/c7se00422b.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840329 8564_ $$uhttps://juser.fz-juelich.de/record/840329/files/c7se00422b.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840329 909CO $$ooai:juser.fz-juelich.de:840329$$pVDB
000840329 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b4$$kFZJ
000840329 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000840329 9141_ $$y2018
000840329 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000840329 980__ $$ajournal
000840329 980__ $$aVDB
000840329 980__ $$aI:(DE-Juel1)IEK-1-20101013
000840329 980__ $$aUNRESTRICTED
000840329 981__ $$aI:(DE-Juel1)IMD-2-20101013