001     840329
005     20240711085619.0
024 7 _ |a 10.1039/C7SE00422B
|2 doi
024 7 _ |a WOS:000424001700007
|2 WOS
037 _ _ |a FZJ-2017-07871
082 _ _ |a 660
100 1 _ |a Geier, Sebastian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A wet-chemical route for macroporous inverse opal Ge anodes for lithium ion batteries with high capacity retention
260 _ _ |a Cambridge
|c 2018
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1518528363_2213
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Germanium holds great potential as an anode material for lithium ion batteries due to its high specific capacity and its favorable properties such as good lithium ion diffusivity and electronic conductivity. However, the high cost of germanium and large volume changes during cycling, which lead to a rapid capacity fading for bulk Ge materials, demand for nanostructured thin film devices. Herein we report the preparation and electrochemical properties of thin films of porous, inverse opal structured Ge anodes obtained via a simple, up-scalable wet-chemical route utilizing [Ge9]4− Zintl ions. In the absence of conductive additives, they show high initial capacities of >1300 mA h g−1 and promisingly high coulombic efficiencies of up to 99.3% and deliver over 73% of their initial capacity after 100 cycles when cycled vs. metallic lithium. In contrast to many other porous structured Ge electrodes, they show very little to almost no capacity fading after an initial drop, which makes them promising candidates for long life applications.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jung, Roland
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Peters, Kristina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gasteiger, Hubert A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 4
|u fzj
700 1 _ |a Fässler, Thomas F.
|0 0000-0001-9460-8882
|b 5
|e Corresponding author
773 _ _ |a 10.1039/C7SE00422B
|g p. 10.1039.C7SE00422B
|0 PERI:(DE-600)2882651-6
|p 85-90
|t Sustainable energy & fuels
|v 2
|y 2018
|x 2398-4902
856 4 _ |u https://juser.fz-juelich.de/record/840329/files/c7se00422b.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840329/files/c7se00422b.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840329/files/c7se00422b.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840329/files/c7se00422b.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840329/files/c7se00422b.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840329/files/c7se00422b.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840329
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21