001     840355
005     20240711113909.0
024 7 _ |a 10.1088/1402-4896/aa8a14
|2 doi
024 7 _ |a 0031-8949
|2 ISSN
024 7 _ |a 1402-4896
|2 ISSN
024 7 _ |a WOS:000414120500027
|2 WOS
024 7 _ |a altmetric:27806479
|2 altmetric
037 _ _ |a FZJ-2017-07892
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kinna, D.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The near infrared imaging system for the real-time protection of the JET ITER-like wall
260 _ _ |a Bristol
|c 2017
|b IoP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512037830_20642
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper describes the design, implementation and operation of the near infrared (NIR) imaging diagnostic system of the JET ITER-like wall (JET-ILW) plasma experiment and its integration into the existing JET protection architecture. The imaging system comprises four wide-angle views, four tangential divertor views, and two top views of the divertor covering 66% of the first wall and up to 43% of the divertor. The operation temperature ranges which must be observed by the NIR protection cameras are, for the materials used on JET: Be 700 °C–1400 °C; W coating 700 °C–1370 °C; W bulk 700 °C–1400 °C. The Real-Time Protection system operates routinely since 2011 and successfully demonstrated its capability to avoid the overheating of the main chamber beryllium wall as well as of the divertor W and W-coated carbon fibre composite (CFC) tiles. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%–3% of the discharges were terminated due to the detection of actual hot spots.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huber, V.
|0 P:(DE-Juel1)132145
|b 1
|u fzj
700 1 _ |a Arnoux, G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Balboa, I.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Balorin, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Carman, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Carvalho, P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Collins, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Conway, N.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a McCullen, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jachmich, S.
|0 P:(DE-Juel1)130043
|b 10
|u fzj
700 1 _ |a Jouve, M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Linsmeier, Ch
|0 P:(DE-Juel1)157640
|b 12
700 1 _ |a Lomanowski, B.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lomas, P. J.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Lowry, C. G.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Maggi, C. F.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a May-Smith, T.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Meigs, A.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Mertens, Philippe
|0 P:(DE-Juel1)4596
|b 20
|u fzj
700 1 _ |a Nunes, I.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Price, M.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Puglia, P.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Riccardo, V.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Rimini, F. G.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 26
|u fzj
700 1 _ |a Tsalas, M.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Zastrow, K-D
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Huber, Alexander
|0 P:(DE-Juel1)130040
|b 29
|e Corresponding author
|u fzj
773 _ _ |a 10.1088/1402-4896/aa8a14
|g Vol. T170, p. 014027 -
|0 PERI:(DE-600)1477351-x
|p 014027
|t Physica scripta
|v T170
|y 2017
|x 1402-4896
856 4 _ |u https://juser.fz-juelich.de/record/840355/files/Huber_2017_Phys._Scr._2017_014027.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840355/files/Huber_2017_Phys._Scr._2017_014027.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840355/files/Huber_2017_Phys._Scr._2017_014027.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840355/files/Huber_2017_Phys._Scr._2017_014027.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840355/files/Huber_2017_Phys._Scr._2017_014027.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840355/files/Huber_2017_Phys._Scr._2017_014027.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840355
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130043
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)4596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 29
|6 P:(DE-Juel1)130040
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21