001     840396
005     20240711085557.0
024 7 _ |a 10.1021/jacs.7b06081
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a pmid:29249151
|2 pmid
024 7 _ |a WOS:000425475300025
|2 WOS
024 7 _ |a altmetric:33723864
|2 altmetric
037 _ _ |a FZJ-2017-07929
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Sick, Torben
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting
260 _ _ |a Washington, DC
|c 2017
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1519390515_11420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Light-driven water electrolysis at a semiconductor surface is a promising way to generate hydrogen from sustainable energy sources, but its efficiency is limited by the performance of available photoabsorbers. Here we report the first time investigation of covalent organic frameworks (COFs) as a new class of photoelectrodes. The presented 2D-COF structure is assembled from aromatic amine-functionalized tetraphenylethylene and thiophene dialdehyde building blocks to form conjugated polyimine sheets, which π-stack in the third dimension to create photoactive porous frameworks. Highly oriented COF films absorb light in the visible range to generate photo-excited electrons that diffuse to the surface and are transferred to the electrolyte resulting in proton reduction and hydrogen evolution. The observed photoelectrochemical activity of the 2D-COF films and their photocorrosion stability in water pave the way for a novel class of photoabsorber materials with versatile optical and electronic properties that are tunable through the selection of appropriate building blocks and their three-dimensional stacking.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hufnagel, Alexander G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kampmann, Jonathan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kondofersky, Ilina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Calik, Mona
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rotter, Julian M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Evans, Austin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Döblinger, Markus
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Herbert, Simon
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Peters, Kristina
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Böhm, Daniel
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Knochel, Paul
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Medina, Dana D.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 13
700 1 _ |a Bein, Thomas
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.1021/jacs.7b06081
|g p. jacs.7b06081
|0 PERI:(DE-600)1472210-0
|n 6
|p 2085 - 2092
|t Journal of the American Chemical Society
|v 140
|y 2017
|x 0002-7863
856 4 _ |u https://juser.fz-juelich.de/record/840396/files/jacs.7b06081.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840396/files/jacs.7b06081.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840396/files/jacs.7b06081.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840396/files/jacs.7b06081.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840396/files/jacs.7b06081.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840396/files/jacs.7b06081.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840396
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2015
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21