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A B S T R A C T

Neuroimaging has evolved into a widely used method to investigate the functional neuroanatomy, brain-be-

haviour relationships, and pathophysiology of brain disorders, yielding a literature of more than 30,000 papers.

With such an explosion of data, it is increasingly difficult to sift through the literature and distinguish spurious

from replicable findings. Furthermore, due to the large number of studies, it is challenging to keep track of the

wealth of findings. A variety of meta-analytical methods (coordinate-based and image-based) have been de-

veloped to help summarise and integrate the vast amount of data arising from neuroimaging studies. However,

the field lacks specific guidelines for the conduct of such meta-analyses. Based on our combined experience, we

propose best-practice recommendations that researchers from multiple disciplines may find helpful. In addition,

we provide specific guidelines and a checklist that will hopefully improve the transparency, traceability, re-

plicability and reporting of meta-analytical results of neuroimaging data.

1. Introduction

Over the last two decades, neuroimaging has evolved into a widely

used method to investigate functional neuroanatomy, brain-behaviour

relationships, and pathophysiology of brain disorders. However, single

imaging studies usually rely on underpowered studies with small

sample sizes, which leads to many missed results (Button et al., 2013)

and pushes researchers towards analyses and thresholding procedures

that increase false positives (Eklund et al., 2016; Wager et al., 2007;

Wager et al., 2009; Woo et al., 2014). In addition, results are strongly

influenced by experimental and analyses procedures (Carp, 2012) and

replication studies are rare. Thus, it is increasingly difficult to sift

through the enormous neuroimaging literature and distinguish spurious

from replicable findings, and even harder to gauge whether effects in

individual studies can be generalized to a task or patient group in a way

that is robust to variation in the specific task and details of analysis

choices performed. Furthermore, due to the large number of studies, it

is challenging to keep track of the wealth of findings (Radua and
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Mataix-Cols, 2012). Thus, there is a need to quantitatively consolidate

effects across individual studies in order to overcome problems asso-

ciated with individual neuroimaging studies.

One potent approach to synthesizing the multitude of results in an

unbiased fashion is to perform a meta-analysis. There are two general

approaches to neuroimaging meta-analyses: image-based and co-

ordinate-based meta-analyses. Image-based meta-analyses are based on

the full statistical images of the original studies, whereas coordinate-

based meta-analyses only use the x,y,z-coordinates (and in some cases

their z-statistic) of each peak location reported in the respective pub-

lication. Image-based meta-analyses allow for the use of hierarchical

mixed effects models that account for intra-study variance and random

inter-study variation (Salimi-Khorshidi et al., 2009) as the full in-

formation required for this is provided in image form. However, due to

the fact that whole-brain statistical images are rarely shared (but see

Gorgolewski et al., 2015; http://neurovault.org, for recent approaches

of sharing unthresholded statistical images in an online database), most

meta-analytic research questions cannot yet be addressed with image-

based meta-analysis. In contrast, while coordinate-based meta-analyses

use a sparser representation of findings, almost all individual neuroi-

maging studies provide their results as coordinates in standardized

anatomical space (either MNI (Collins et al., 1994) or Talairach

(Talairach and Tournoux, 1988) space). Thus, coordinate-based meta-

analyses allow us to capitalize on much of the published neuroimaging

literature, and provide a quantitative summary of these results to an-

swer a specific research question.

There are different approaches to coordinate based meta-analysis,

including (multilevel) kernel density analysis (KDA, MKDA; e.g., Wager

et al., 2004; Wager et al., 2007; Pauli et al., 2016), gaussian-process

regression (GPR; Salimi-Khorshidi et al., 2011), activation likelihood

estimation (ALE; Eickhoff et al., 2012; Eickhoff et al., 2009; Turkeltaub

et al., 2002; Turkeltaub et al., 2012), parametric voxel-based meta-

analysis (PVM; Costafreda et al., 2009), signed differential mapping

(SDM; Radua and Mataix-Cols, 2009). A revised version of SDM, termed

effect-size SDM (ES-SDM), also allows for the combination of co-

ordinate-based results and statistical images (Radua et al., 2012).

Despite the increasing use of meta-analytic approaches in the last

few years, there is a lack of concrete recommendations regarding how

to perform neuroimaging-based meta-analyses, report findings, or make

results available for the whole neuroimaging community to foster re-

producibility of neuroimaging meta-analytic results. For individual MRI

experiments, such guidelines have already been developed (COBIDAS;

Nichols et al., 2017). However, best practices for neuroimaging meta-

analyses differ from those of individual imaging studies (and also from

those of effect-size based meta-analyses of behavioral studies, (e.g.,

MARS; (American Psychological Association, 2010))). Thus, the aim of

this paper is twofold. First, we provide best-practice recommendations

that should be considered carefully when performing neuroimaging

meta-analyses and help researchers to make informed and traceable

decisions. Second, we set standards regarding which information

should be reported when publishing meta-analyses to enable other re-

searchers to replicate the study. While these recommendations are

primarily relevant to coordinate-based meta-analyses, most of them

also hold true for image-based meta-analyses.

2. Recommendations

2.1. Be specific about your research question

The critical first step of any meta-analysis is to specify as precisely

as possible the research question and the approach towards in-

vestigating it. For most functional neuroimaging meta-analyses (this

decision is not relevant for structural imaging studies), the researcher

must first decide which paradigms to include in the meta-analysis. For

example, a researcher interested in cognitive action control may want

to know which regions are consistently found activated or deactivated

across experiments that required participants to inhibit a prepotent

response in favor of a non-routine one. For this example, the question

arises if one should include all experiments that test cognitive action

control, no matter what paradigm was used (e.g., Stop-signal, Go/No-

Go, Stroop, Flanker tasks…), or limit the analysis to a specific paradigm

(e.g., Stop-signal task). Considering the consequences for interpreta-

tion, the latter case would be specific to the cancelling of an already

initiated action, while a meta-analysis across all paradigms would focus

on the higher order supervisory control processes necessary in all

paradigm types. Importantly, if one decides to include different para-

digms, it may be helpful to ensure that the distribution of experiments

is relatively balanced across tasks. However, in this context, it should be

noted, that if there is enough literature available, there is the possibility

to not only calculate one main meta-analysis, but rather also sub-ana-

lyses which may focus on more specialized processes (e.g., different

paradigm classes) or groups (e.g. different patient samples). For ex-

ample, one could plan to calculate a general meta-analysis across Stop-

signal, Go/No-Go, Stroop and Flanker tasks and then also individual

sub-analyses for each paradigm. Convergence across paradigms could

be then tested by overlapping the results of the different sub-analyses,

or quantitatively using an omnibus test of difference in reported acti-

vation pattern (Tench et al., 2014). However, these choices of sub-

analyses should have a rationale and be made beforehand and not after

inspecting the data (see below). Importantly, brain processes may not

always be organized by named task type and minor variations in

paradigms can produce large changes in cognitive strategies. As an

example, Gilbert et al. (2006) showed that across diverse cognitive

domains differences in reaction times between experimental and con-

trol conditions are differentially associated with the lateral versus

medial rostral prefrontal cortex. That is, when performing a meta-

analysis the researcher should carefully select the respective experi-

ments, focusing not only on the paradigm name but also check if the

process involved in the respective contrast really reflects the critical

cognitive process.

In addition to specifying the paradigms for the analysis, inclusion

and exclusion criteria need to be specified. There are general criteria

that should be applied. These general criteria refer to only including

whole brain experiments (see details below) and only including ex-

periments from which coordinates or statistical images in standard

anatomical space can be obtained (see details below). For ES-SDM,

another general criteria is to only include experiments that report ac-

tivations and deactivations (or increases and decreases when comparing

groups).

Additionally, specific criteria that depend on the particular research

question must be specified. Beyond included tasks and paradigms, these

specific criteria can relate to analyses and methods. For example, the

question might arise if one should only include functional imaging

(fMRI) studies (e.g., Kurkela and Dennis, 2016) or studies using either

fMRI or positron emission tomography (PET) (e.g., Langner and

Eickhoff, 2013; zu Eulenburg et al., 2012).

Examples of other specific inclusion and exclusion criteria relate to

aspects of the analysis (e.g. inclusion of only main effects or also of

interactions, restricting the meta-analysis to only experiments reporting

results on a certain statistical threshold) or to characteristics of the

subject group (for example including only healthy subjects or only

group comparisons, inclusion of only a specific age range of subjects).

Importantly, it should always be kept in mind that the criteria one

applies have an impact on how heterogeneous (or homogeneous) the

sample of experiments is. Moreover, inclusion and exclusion criteria

influence whether or not the sample of experiments is representative for

the entire neuroimaging literature available for a specific topic and thus

the quality of inclusion. In general, quality of inclusion is given when

doing a systematic literature search. However, under certain circum-

stances it might be limited. For example, when the process investigated

and the corresponding inclusion criteria and terminology are defined

based on the work of one specific author doing a lot of experiments in
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this field. This could lead to including only the work of this specific

author while concurrently excluding work defining the process a bit

different. This emphasizes the need for detailed reporting which ex-

periments are excluded from the meta-analysis and the reasons for

doing so.

For research questions regarding group effects there are additional

considerations, which have to be taken into account. First of all, there is

the question if the focus is on within- (e.g. a specific patient group) or

between-group effects (e.g. comparison between patients and controls).

When the focus is on between-group effects there are two ways to plan

the project: on the one hand, there is the possibility to calculate a meta-

analysis across all experiments comparing the groups of interest (e.g.

schizophrenia versus controls). On the other hand, two meta-analyses

can be calculated, one across experiments in one group (e.g. schizo-

phrenia) and one across experiments of the other group (e.g. controls).

In this case, one should make sure that there are no systematic

thresholding differences in the original experiments (such as e.g. the

results coming from the controls are all corrected, while results from

patients are all uncorrected) as this will bias the meta-analytic results.

Afterwards a group comparison can be done by doing a contrast ana-

lysis between the two meta-analyses (see Spreng et al., 2010). While the

former approach is most common, the latter might be an option espe-

cially when there are only few experiments reporting between group

effects. Importantly, depending on whether the group comparison is

done on the experimental or meta-analytic level, interpretation of re-

sults changes. That is, while results of meta-analyses across experiments

of group comparisons reflect “convergence of differences in brain ac-

tivation between groups”, a meta-analytic contrast analyses reveals

“differences in convergence of brain activation between groups”.

Once a set of papers has been selected, there is also the question of

which specific contrasts to include. That is, a paper (which refers to a

published item) often reports different analyses or contrasts (which are

in the terminology of meta-analyses most frequently called experi-

ments). For example, a paper uses the Go/No-Go (with 75% Go and

25% No-Go trials) task and reports three different contrasts:

Go > Rest, No-Go > Rest, No-Go > Go. While the first contrast does

not reflect cognitive action control processes necessary to suppress a

dominant action plan, the latter two do test for regions involved in

these supervisory control processes. Thus, the question arises, if one

should include both relevant contrasts or rather only one of the two (see

rule 5 for recommendations regarding multiple contrasts per paper).

Additionally, it is also important to decide across which processes

and modalities the meta-analysis should be calculated. For example,

does it make sense to pool across task fMRI and connectivity experi-

ments? Technically, everything is possible. However, the interpretation

of the meta-analytic results crucially depends on the inclusion/exclu-

sion criteria and the experiments on which the analysis is based.

In summary, the first step of a neuroimaging meta-analysis is to

specify the research question as precisely as possible, which includes

the definition of the process investigated, specification of paradigms

and contrasts included as well as the general and specific inclusion and

exclusion criteria.

2.2. Consider the power of the meta-analysis

An important aspect when planning a meta-analysis is the question

of how many experiments are necessary in order to be able to perform a

robust analysis. Obviously the higher the sample size, the better the

power. However, meta-analyses always face a trade-off between

number of included experiments (power) and their quality and het-

erogeneity (Müller et al., 2017). That is, in order to increase the number

of experiments an investigator might include experiments that are more

heterogeneous in task and design (e.g., include all possible paradigms

investigating cognitive action control) or feature lower quality. Thus,

when planning a meta-analysis, there is always the challenge to find a

balance between homogeneity and power. However, there are

conceptual limitations for power, as consolidation of the literature

about a specific research field only makes sense if there is enough lit-

erature. Thus, when specifying the research question, the literature

should always be screened beforehand in order to estimate if there is a

reasonable number of experiments to include. This is particularly im-

portant for coordinate-based meta-analyses; for image-based analyses,

where a random effects approach is generally used, an insufficient

number of studies will likewise hamper power due to limited degrees of

freedom to estimate between-study variability. For both approaches the

generalization of results is questionable when including only a small

number of experiments. The key problem with a low number of ex-

periments, at least in ALE based meta-analyses, is that results can be

strongly driven by only a few experiments (Eickhoff et al., 2016). Thus,

when pooling across different analytical and experimental approaches

(e.g., Go-No-Go and Stop-Signal), this fact can lead to a problem of

generalization as only specific types of experiments could drive the

results. In general, a meta-analysis aims to pool across different ap-

proaches and tasks in order to investigate effects consistent across

strategies (Radua and Mataix-Cols, 2012). However, in the event that

results can be driven by only a few experiments as is the case for small

samples, the generalizability of effects is more questionable.

Based on a recent simulation study (Eickhoff et al., 2016), a re-

commendation was made to include at least 17–20 experiments in ALE

meta-analyses in order to have sufficient power to detect smaller effects

and to also make sure that results are not driven by single experiments.

Of course, this can only been seen as rough recommendation as the

required number of experiments of a meta-analyses is strongly depen-

dent on the expected effect size. Thus, in cases where a strong effect is

expected, smaller sample sizes may be sufficient to perform reliable

meta-analyses. However, analyses with expected small and medium

effect sizes (which is often the case) that include a lower number of

experiments should be treated with caution.

That said, the experiments must fully meet the inclusion criteria.

Thus, a sound meta-analysis aims to include many experiments but it

may have to discard large numbers of them in order to meet the in-

clusion criteria.

Thus, a crucial consideration when planning and performing a

(coordinate-based) meta-analysis is whether there are enough experi-

ments available that meet all inclusion criteria to ensure that the meta-

analysis has adequate sensitivity to detect effects of the expected

magnitude, while maximizing ability to generalize to as broad a po-

pulation of studies of interest as possible.

2.3. Collect and organize your data

After the research question has been specified, data collection can

start. Usually it begins with a thorough literature search, using different

search engines. For neuroimaging the most commonly used ones are

Pubmed (https://www.ncbi.nlm.nih.gov/pubmed), Web of Science

(https://webofknowledge.com), and Google Scholar (https://scholar.

google.com/). By using combinations of different keywords restricting

the search to specific experiments (e.g. “Go/No-Go”), study types (e.g.

“fMRI”) or/and populations (e.g. “human”), potential studies for the

meta-analysis can be identified (one can also potentially use less con-

ventional selection strategies; e.g., the Neurosynth or Brainmap data-

base allow researchers to identify papers of, for example, a specific

topic). Furthermore, reference tracing in already identified articles as

well as in review articles usually helps to complete the literature search.

Importantly, everything that is done should be tracked. That is, search

engines, keywords and date boundaries should be recorded; along with

how many papers were identified by the search; how many of them

were excluded; and the reasons for rejection. Any resultant manuscript

should provide this information in the methods section. In fact; many

journals require “Preferred Reporting Items for Systematic Reviews and

Meta-Analyses” (PRISMA) workflow charts for publications of meta-

analyses; which graphically illustrate exactly this information. Keeping
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detailed records during search and selection of experiments eliminates

the need to repeat the literature search later.

After identification of all potential papers, the data need to be or-

ganized, and all necessary information for the analysis must be ex-

tracted. First, the selected experiments should be examined for fulfill-

ment of all inclusion criteria. Thus, each publication must provide a

minimum of information required to determine eligibility for inclusion

in the meta-analysis. This information refers to coordinates, sample

size, and inference/acquisition space. In coordinate-based meta-ana-

lyses an experiment can only be included when it reports its results as

x/y/z coordinates in standard space (i.e. MNI or TAL), provides the

number of included subjects, results are based on whole-brain analysis

without small volume corrections, and both increases and decreases are

reported (for ES-SDM). Z-statistics (or equivalents such as t-statistics or

uncorrected p-values) are needed for GPR and are strongly suggested

for ES-SDM. This should always be taken into account when choosing a

meta-analytic approach: While GSP and ES-SDM use the z-statistics of

the reported results in each experiment; the remaining methods treat all

foci equally.

In cases where it is difficult to identify the standard space used or if

a whole-brain analysis was conducted, contacting the authors and

asking for further information can help to provide this specific in-

formation.

It can be very useful to create a table that details all the information

that has been extracted from each included experiment. This gives a

good overview of the experiments and can help to identify on which

criteria to aggregate the experiments (e.g., an overall analysis across all

experiments of cognitive action control) and for performing specific

sub-analyses (e.g. only No-Go vs. Go experiments, only corrected re-

sults, etc.). Furthermore, this table can later be helpful when writing the

manuscript as each included experiment should be described and re-

ported in detail.

In summary, for every neuroimaging meta-analysis data collection

and organization should be carried out in a precise and conscientious

fashion, which includes tracking all steps of the literature search and

data selection.

2.4. Ensure that all included experiments use the same search coverage and

identify and adjust differences in reference space

An important aspect for coordinate-based meta-analyses is that

convergence across experiments is tested against a null-hypothesis of

random spatial associations across the entire brain under the assump-

tion that each voxel has a priori the same chance of being activated

(Eickhoff et al., 2012; Radua and Mataix-Cols, 2009; Wager et al.,

2007). Therefore, it is a prerequisite that all experiments that are in-

cluded in a meta-analysis come from the same original search coverage

(most commonly the whole brain). Inclusion of heterogeneous region-

of-interest (ROI) or small volume corrected (SVC) analyses would vio-

late this assumption and lead to inflated significance for those regions

that come from overrepresented ROI/SVC analyses. For example, let’s

assume that all of the included experiments of the cognitive control

meta-analysis performed a ROI/SVC analysis on the anterior cingulate

cortex (ACC) and most of them reported activation in this structure.

Significant convergence is almost guaranteed when testing against a

null-hypothesis of random spatial convergence across the entire brain.

However, this result would only be a confirmation of the bias of in-

vestigating activity during cognitive action control solely in the ACC.

Thus, in general ROI/SVC analyses should not be included in a meta-

analysis.

Importantly, excluding all experiments that used ROI analyses may

itself lead to a bias as a critical amount of studies may not be considered

in the meta-analysis. To avoid neglecting the importance of e.g. small

regions that are commonly used as ROIs the researcher should report

how many experiments using ROI analyses were excluded from the

meta-analysis and acknowledge those regions that are commonly used

as ROIs in their introduction and discussion section.

However, it should be noted that inclusion of ROI analyses may be

valid if the whole meta-analysis focuses on just a specific region of

interest. Importantly, in this case the null-space has to be adapted to the

ROI, i.e. testing against random spatial association across the ROI only.

For example, one could ask if and where in the ACC experiments of

cognitive action control converge, include also ROI-based experiments

and model the null space accordingly with a mask of the ACC. This

approach, however, may not be a reasonable solution for small regions

as here due to spatial uncertainty of the fMRI signal compared to the

size of the region it may not be meaningful to ask where exactly in the

ROI the signal converges. Furthermore, in their standard implementa-

tion, only few available software tools for neuroimaging meta-analysis

offer such ROI meta-analysis (e.g. ES-SDM). Moreover, all included

experiments need to fulfill the criteria of having used a mask that in-

cludes the same ROI. For some cases this is conceivable; for example,

the amygdala where most experiments use standard masks. However,

other regions such as the DLPFC are less suitable as they are anatomi-

cally less well defined with different authors using different masks.

SVC analyses may be potentially included if peaks in the regions

liberally thresholded are discarded unless they meet the statistical

threshold used in the rest of the brain. For example, if an experiment

applies a threshold of t > 2 in regions with SVC and t > 4 in the rest

of the brain, peaks of the SVC could also be included if they reach a

t > 4. In other words, one would simulate that the more conservative

threshold used in the rest of the brain was also applied to the regions

with SVC. If this is done, this should definitely be reported in the

publication of the meta-analysis by indicating for each experiment

which coordinates exactly have been discarded.

Importantly, potential experiments should not only be checked for

classical (explicit) ROI analyses but also for so-called “hidden” ones.

That is, sometimes the inference space is also reduced by, for example,

partial brain coverage during image acquisition. While exclusion of

explicit ROI analyses is most of the time applied in meta-analyses,

hidden ROI analyses are often included. However, strictly speaking,

those hidden ROI analyses act in the same way as explicit ones. Some

papers report partial brain coverage by for example stating that ac-

quisition of slices “started at the temporal pole up to the hand motor

area” or make clear that the whole brain was covered. However, in

other cases only minimal information on image acquisition is given and

it is up to the investigator to decide if the whole brain was covered or

not. In general, if a paper does provide in detail the scanner parameters

one can easily see if the requirement of whole brain coverage is met or

not. What is needed is slice thickness, number of slices, gap as well as

the field of view (alternatively to FOV: matrix and voxel size). As an

approximation, the average brain has a width of 140 mm (right-left), a

length of 167 mm (posterior-anterior) and a height of 93 mm (inferior-

superior NOT including the cerebellum) (Carter, 2014). Thus, by using

the scanner parameters provided in the method section of the papers it

can be estimated if the whole brain was covered during image acqui-

sition or not. For example, ten slices of 4 mm each does not cover the

whole brain. In other cases it is trickier and there are also a lot of ex-

periments that scan almost the entire brain (i.e. missing only one or two

slices). These experiments might be considered for inclusion, but should

be reported as experiments with “almost complete brain coverage”. One

potential solution for this problem can also be to use a reduced null

space, thus raising the statistical threshold. In the KDA approach such a

restrictive null space is implemented by using a gray matter mask with

border (e.g. Kober and Wager, 2010).

In contrast to ROI and partial brain coverage, more debatable cases

are functional neuroimaging studies that use masking or conjunctions.

For example, a comparison of brain activity between a No-Go and Go

condition could be masked by the positive main effect of the No-Go

condition in order to mask out deactivations. These masking procedures

are particularly applied when interactions are investigated (e.g.,

Remijnse et al., 2009). In general, for individual fMRI studies masking
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and conjunctions are perfectly reasonable and important. However, in

the strict sense, inclusion of these analyses is also questionable as they

do reduce the inference space to only regions of the masking contrast.

This may be less critical if the original contrast used for masking was

whole brain. Depending on the specific research question researchers

should carefully consider if experiments using masking contrasts or

those scanning almost the entire brain are included, and transparently

report which experiments used an inference space that is restricted.

In addition to using the same search coverage all included experi-

ments should also be in the same reference space. As mentioned above,

one of the general inclusion criteria is to only include experiments re-

porting their results in a standard reference space. This is usually the

case for all experiments investigating effects in a group of (and not

individual) subjects. That is, for every fMRI and PET group-analysis,

imaging data is normalized into a standard space in order to be able to

investigate effects across subjects. There are two standard spaces used

in neuroimaging, the Talairach and Tournoux (TAL; Talairach and

Tournoux, 1988) and the Montreal Neurological Institute (MNI; Collins

et al., 1994) space. Importantly, coordinates in MNI space differ from

those in TAL (Brett et al., 2001), with brains in MNI being larger than

those in TAL space (Lancaster et al., 2007). Thus, to perform a meta-

analysis across different experiments it is useful and recommended to

convert all results into the same space. There are different approaches

to transformation, for example, the (older) Brett transformation (Brett

et al., 2001; Brett et al., 2002) or the one introduced by Lancaster et al.

(2007). However, before adjusting for differences in space, the standard

space that was used for normalization has to be determined for each

and every included experiment. Usually this information can be found

in the method section. However, sometimes it is not explicitly stated, or

authors give inconsistent information.

So, how can one determine in which space the coordinates were

reported? This information can be derived from i) specifications of the

space by the authors (e.g. stating in the method section: “All co-

ordinates are reported in MNI space”) ii) the template (e.g. MNI152

template) and/or iii) the software (i.e. SPM, FSL, AFNI, BrainVoyager,

Freesurfer) used for normalization and iv) descriptions of transforma-

tions (e.g. for example stating “resulting MNI coordinates were trans-

formed into TAL using the Brett transformation”). For example, an

experiment reporting MNI coordinates that used FSL and an MNI tem-

plate for normalization and not saying anything about transformation

into TAL is clearly in MNI space. However, sometimes it is a little bit

trickier, when for example the software and/or template used do not fit

the author's statement. A common example would be a paper reporting

TAL coordinates in the tables but using SPM with the standard SPM

template (which is in MNI space) for normalization without reporting a

transformation of coordinates. A rule of thumb is that coordinates of

experiments where authors used SPM (version SPM99 and later) or FSL

with normalization to the software's standard template and do not re-

port any transformation should be treated as being in MNI as these

software packages use MNI as standard space. When AFNI,

Brainvoyager or Freesurfer was used, there is unfortunately no such

general rule of thumb and one must rely on the author's description.

This is because these software packages either specifically ask into what

space the data should be normalized to or do not document the stan-

dard space well. Additionally, in cases of uncertainty, the anatomical

space can also be confirmed by contacting the corresponding author.

In summary, classical ROI analyses and small volume corrected re-

sults as well as experiments with only partial brain coverage should

ideally be excluded from meta-analyses in order to avoid biased results.

In addition, inclusion of results using masking or conjunctions is also

questionable and should potentially be considered for exclusion from

the meta-analysis depending on the specific research question.

Moreover, in order to adjust for differences in reference spaces between

experiments, for each experiment included in the meta-analysis, the

standard space in which the results are reported has to be determined.

2.5. Adjust for multiple contrasts

When selecting which contrast to include in the meta-analysis, it is

important to note that inclusion of multiple experiments (or contrasts)

from the same set of subjects (either within or between papers) can

create dependence across experiment maps that negatively impacts the

validity of meta-analytic results (Turkeltaub et al., 2012). This is pro-

blematic, as multiple experiments from one subject group that reflect

similar cognitive processes (like in our example cognitive action control

delineated by the No-Go > Rest and No-Go > Go experiment) are not

independent (Turkeltaub et al., 2012). Thus, when planning a meta-

analysis, one needs to clarify how multiple experiments reflecting a

similar process from the same sample are dealt with. One approach

would be to adjust for within-group effects by, e.g. pooling the co-

ordinates from all relevant contrasts (in this case No-Go > Go and No-

Go > Rest) into one experiment (Turkeltaub et al., 2012), averaging

the contrast maps of a sample and adjusting the variance (Rubia et al.,

2014; Alegria et al., 2016), or combining the contrast maps of a sample

using a weighted mean depending on the amount of information of each

contrast in each voxel (Alustiza et al., 2016).

If the adjustment for multiple contrasts is not an option, one may

prefer to include only one experiment per subject group. This could be

to only include the contrast that most strongly reflects the process that

the meta-analysis aims to investigate (e.g. Cieslik et al., 2015). For

example, this would be including only the No-Go > Go and excluding

the No-Go > Rest (as it reflects more than just supervisory control

processing) contrast from the meta-analysis. Alternatively, based on the

research question one could also decide to include the more lax contrast

(e.g. No-Go > Rest). However, in this case the researcher should be

aware about the interpretation of the results as such a meta-analysis

will not only reveal regions associated with the process of interest (e.g.

supervisory control) but also other more general functions (e.g. visual

processing).

Thus, when multiple experiments from the same subject group are

included in the meta-analysis a crucial consideration is how to adjust

for repeated measures.

2.6. Double check your data and report how you did it

Most authors that plan and perform a meta-analysis do the literature

search as well as the extraction of relevant coordinates and meta-data

manually and non-automatically. On the one hand, this leads to very

detailed and flexible literature search and extraction of relevant in-

formation, but on the other hand also makes the process error-prone.

For example, mistakes can happen when transferring coordinates and

their signs, or a statement about a transformation from MNI to TAL

might be missed. Therefore, to avoid errors in the data, any manual

data extraction should be double-checked (or duplicated), ideally by a

second investigator. Having two investigators ensures that different

people agree on which experiments meet the general and specific in-

clusion and exclusion criteria as well as about the quality of inclusion

(i.e. a selection bias is less likely with two investigators). In addition,

duplication or double-checking of the recorded data either by the same

or different investigators ensures the correctness of the space (MNI or

TAL) and the correctness of the coordinates (e.g., in some older pub-

lications left and right is switched which can easily be missed). A

helpful way for double-checking the coordinates is to either read them

backwards or doing the coding horizontally but check them vertically.

However, in any case, copy-paste from a PDF into an excel file is prone

to errors and should be avoided.

If ES-SDM is done and a map is recreated for each experiment, one

can check that the map and their peaks approximate the reports and

figures of the paper. In this context, for all neuroimaging meta-analyses

it might be helpful to view the included coordinates on the used tem-

plate space. Importantly, most analyses tools exclude coordinates which

are outside the template mask. For analyses across a small amount of
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experiments this might be undesired and have an effect on the results.

In this case, one might decide to adjust the foci so that they still fall into

the template space (see Fox et al., 2015 for an example of adjustment).

However, all adjustments have to be reported and described in detail as

well as the rationale for doing so should be specified. Another option

for performing quality control would be to use automated experiment

diagnostics. For example, Tench et al. (2013) identified outliers among

included experiments by determining the overlap of foci between ex-

periments. However, this automated approach does not fully replace

manual quality control as it typically only detects extreme outliers and

misses errors like incorrect space specifications or sign mistakes.

In contrast to manual extraction of data, there is also the option of

collecting data in an automated fashion (e.g., Daniel et al., 2016; Yang

et al., 2015; Laird et al., 2015). That is, databases like BrainMap

(https://www.brainmap.org/) (Fox and Lancaster, 2002; Laird et al.,

2005) or Neurosynth (http://neurosynth.org/) (Yarkoni et al., 2011)

that synthesize neuroimaging literature can be used to automatically

extract meta-data. This approach comes with the advantage of faster

and less error-prone coordinate extraction, but with the downside that

experiment selection is less specific and that application of some in-

clusion/exclusion criteria is not possible. In addition, these databases

include only a sample of the available neuroimaging literature. While a

fully automated meta-analysis may be viable in situations where there

are hundreds or thousands of applicable experiments (and the high

error rate in individual experiments may be more than offset by a huge

increase in signal), the vast majority of applications require that the

data derived from automated data extraction be carefully inspected and

corrected.

In summary, in order to avoid errors and to increase the replicability

of the meta-analysis, the eligibility of all experiments based on the pre-

specified inclusion and exclusion criteria, as well as the correctness of

all data used in the final meta-analysis must be double-checked.

2.7. Plan the analyses beforehand and consider registering your study

protocol

As in other neuroimaging studies, a researcher performing a meta-

analysis has a lot of “degrees of freedom”. This refers to choices of the

statistical tests, number of analyses performed but also to the inclusion

and exclusion of experiments (Simmons et al., 2011). Thus, standard

concerns about p-hacking also apply to coordinate-based meta-ana-

lyses. Therefore, all choices and analyses should be planned beforehand

and inclusion and exclusion criteria not be modified based on the ob-

served results (e.g., repeat the analysis after excluding specific para-

digms until significant findings are found). Such practices would result

in p-values that don’t have their nominal value anymore and that are

thus meaningless.

To increase transparency and traceability, we strongly recommend

that study aims, hypotheses and all analytic details are registered on a

publicly available website or database, such as PROSPERO (https://

www.crd.york.ac.uk/PROSPERO/) prior to start of the literature

search. Any deviations from the registered protocol, or any non-planned

analyses, must be clearly marked as post-hoc or non-prespecified in the

resulting manuscript.

2.8. Find a balance between sensitivity and susceptibility to false positives

As in most neuroimaging studies, multiple statistical tests are per-

formed in a neuroimaging meta-analysis (e.g. for all voxels of the

brain), and the researcher performing it must balance between sensi-

tivity and susceptibility to false positives. On the one hand, by not

correcting for multiple comparisons, one is certainly more sensitive to

discover meaningful (smaller) effects (Lieberman and Cunningham,

2009). Thus, a meta-analysis that aims to maximize sensitivity might

show unthresholded whole brain maps if the fact that false positives are

not controlled for is clearly indicated and the explorative nature of the

results highlighted. However, a lack of control for multiple comparisons

also comes with the concurrent downside of a potential contamination

of the meta-analytic results (which in turn may strongly influence the

future literature) by chance discoveries. Hence, in the majority of cases

meta-analytic results should be reported following correction for mul-

tiple comparisons. There are different options to account for multiple

comparisons in meta-analyses, like controlling for the family-wise error

(FWE) or the false discovery rate (FDR), on the voxel- or cluster-level.

Voxel-wise FDR correction has become the most widely used correction

approach for neuroimaging meta-analysis. However, it has been argued

that this correction approach is not adequate for topographic inference

on smooth data (Chumbley and Friston, 2009), which also includes

neuroimaging meta-analysis data. In addition, for ALE a previous si-

mulation study demonstrated that voxel-wise FDR correction features

low sensitivity as well as an increased risk of finding spurious clusters

(Eickhoff et al., 2016). Regarding FWE, its use in current neuroimaging

meta-analytic methods is in some way limited by the fact that meta-

analytic p-values are not reflecting the probability that a voxel shows an

effect by chance. Thus, even if these p-values would be corrected for

multiple comparisons, the researcher wouldn’t know if the probability

of detecting an effect by chance is small or large. Therefore, the use of

FWE in current voxelwise meta-analyses should be considered an

Fig. 1. Flow-chart illustrating the important steps of a meta-analysis.
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informal control of the false positive rate, unless results are exclusively

interpreted in terms of spatial convergence in the specific null space

(see later).

In general, for ALE meta-analyses (and possibly also other co-

ordinate-based meta-analyses) cluster-level FWE correction seems to be

the most reasonable approach, as it entails low susceptibility to false

positives in terms of convergence (Eickhoff et al., 2016). Importantly,

on the voxel-level a cluster forming threshold of p < 0.001 and a

cluster-level threshold of p < 0.05 is recommended.

For ES-SDM, a previous simulation showed that an uncorrected

threshold of p = 0.005 with a cluster extent of 10 voxels and SDM-

Z > 1 adequately controlled the probability of detecting an effect by

chance, and it is thus recommended (Radua et al., 2012). However, this

is again an informal control of the false positive rate and could be too

conservative or too liberal in other datasets, it must be understood as an

approximation to corrected results.

In summary, when doing a meta-analysis a researcher should aim to

achieve high sensitivity but additionally also low susceptibility to false

positives. To avoid problems such as p-hacking, control of error rates

should be specified a priori as part of the design of the study, and could

Table 1

Checklist for neuroimaging meta-analyses.

V.I. Müller et al.



be liberal or conservative to emphasize sensitivity or specificity re-

spectively. A lack of control of the false positive rate might be accep-

table providing that a post-hoc estimate of a relevant error rate is given

to enable the reader to judge the strength of evidence of a true effect.

2.9. Show diagnostics

Another important part of meta-analytic studies are diagnostics, i.e.

post-hoc analyses providing more detailed information on the revealed

clusters of convergence or effect. This can be done by, for example,

showing the experiments contributing to a cluster, creating funnel plots

or additional heterogeneity analyses using I2 and meta-regressions

(usually done for ES-SDM). Importantly, these additional diagnostics

can reveal valuable information on the clusters found in the meta-

analysis.

There are different ways to determine the contribution of experi-

ments. One is to identify and count all experiments that report foci

directly lying in a specific cluster or within a specific localization un-

certainty range (for example 2 standard deviations; cf. Purcell et al.,

2011; Turkeltaub et al., 2011). Alternatively, contributions can also be

estimated by determining for each included experiment, how much it

contributes to the summarized test-value (e.g. ALE, density) of a spe-

cific cluster (this method was for example used in Cieslik et al., 2016

and a similar approach in Etkin and Wager, 2007). This is done by

computing the ratio of the summarized test-values of all voxels of a

specific cluster with and without the experiment in question, thus es-

timating how much the summarized test-value of this cluster would

decrease when removing the experiment in question. Another alter-

native for evaluating the contribution would be to test for robustness of

results by using jackknife analyses (e.g., Radua and Mataix-Cols, 2009;

Radua et al., 2012). This approach tests how stable results are when

iteratively repeating the meta-analysis, always leaving one experiment

out.

Yet another way is to create a funnel plot, i.e. a scatterplot of the

effect sizes and their variances (or the sample size of the studies). With

this plot, one can observe how many studies found a relevant effect-size

in that voxel, or whether a meta-analytic finding is mostly driven by

small studies, which could be an indicator of potential publication bias.

To note, interpretation of these plots must be appropriate to the context

of CBMA, e.g. many studies may have an effect size of zero if they re-

ported no peaks in the proximity of the voxel.

Examining contributions can also help to identify if results might be

driven by experiments featuring specific characteristics, which would

allow more specific interpretation of the results. For example, let’s as-

sume that an overall meta-analysis across different tasks of cognitive

action control (Go/No-Go, Stop-Signal, Stroop) reveals a widespread

fronto-parietal network. When checking the contribution of each cluster

of this network the researcher discovers that only experiments that used

a Stop-Signal task contributed to the finding in the left anterior insula.

This would imply a more specific interpretation for the role of the left

anterior insula, by linking it more to the specific process of cancellation

of an already initiated action, rather than a general role in supervisory

control. Of course, it is important to remember that post-hoc analysis

choices made only after inspecting one’s data or results (e.g., analyzing

subsets of studies separately, on the basis of apparent heterogeneity)

are more likely to be spurious (Gelman and Loken, 2013, Forstmeier

et al., 2017). Consequently, such post-hoc conclusions should be ex-

plicitly treated as exploratory in one’s manuscript, pending confirma-

tion of the new hypotheses in independent datasets.

In summary, diagnostics provided by contributions, funnel plots and

heterogeneity analysis provide important information about the inter-

pretation of results.

2.10. Be transparent in reporting

As replication of study results becomes more and more important in

the field of neuroimaging, and data science in general (Diggle, 2015), it

is also crucial for meta-analysts to describe and report their specific

research question as well as methods and results with sufficient detail

and transparency to allow replication by an independent researcher.

Providing such detailed reports is sometimes difficult as many journals

have word-limits. However, in these cases all necessary information

should be provided in the supplementary material.

Reporting of the research question and the specification of the

process investigated should be precise. This also implies a detailed and

in depth report of all of the inclusion and exclusion criteria as well as

the motivation for selecting these criteria.

Also, all steps of the meta-analytic study should be reported, ideally

in a flow-chart, including literature search, selection process, experi-

ment classifications into different subgroups, different meta-analyses

conducted and potential further calculations of conjunctions, meta-

analytic contrasts or other analyses. In this context, the number of

papers and experiments (which are often different) included in total, as

well as in each sub-analysis, should be reported.

Importantly, not only the papers that were included in the meta-

analysis must be reported but also the specific contrasts (experiments)

included. A paper often reports more than one experiment. If only the

papers are listed, the list of specific experiments included in the analysis

cannot be replicated. For example, let’s again take the example of a

paper that reports 4 different experiments; two of a Go/No-Go task (No-

Go > Rest and No-Go > Go) and two of a Stop-Signal task

(Stop > Rest, Stop > No-Stop). Let’s assume that, based on the spe-

cification of the research question, both tasks are included, but only

contrasts that test against a control condition. Thus, inclusion of this

paper should be reported, as well as the more specific information that

the coordinates resulted from the No-Go > Go and Stop > No-Stop

contrasts were considered. The best way of reporting this is a table.

In this context the publication of the meta-analysis should also

provide details on how multiple contrasts from the same subject group

were handled (see rule 5). When again taking the same example, one

must report if the two contrasts of the same paper (Go/No-Go and Stop-

Signal) were treated as one or as two separate experiments and which

adjustment was conducted if treated as one.

In general, in order that every reader can easily retrace fulfillment

of the inclusion/exclusion criteria, detailed information of each in-

cluded experiment should be provided. This can be in the form of a

table in the supplement material (cf. Müller et al., 2017). In particular,

this table should list the following information (some of them were

already mentioned before): number of subjects, specific characteristics

of the subjects, task description, stimuli used, coordinate space as well

as contrast calculated including source of coordinates (e.g. table

number from the original paper).

Furthermore, if any additional information from authors of an in-

cluded experiment was received, which is not part of the original

publication (for example, a paper where only results of ROI analyses are

reported and where one received the whole brain results from the au-

thor), it is essential to report this information in the method section.

In the following there is a summary and checklist with all the in-

formation that should be reported:

• Research question

• Detailed inclusion and exclusion criteria and the motivation why

they were applied

• All steps of the meta-analytic study ideally in a flow-chart

• Number of experiments included in each analysis

• All experiments (not only the reference of the publications) in-

corporated

• Handling of multiple experiments from the same subject group

• Detailed information on each included experiment (number of

subjects, specific characteristics of the subjects, task description,

stimuli used, coordinate space, contrast calculated including source

of coordinates)
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• Any additional data received from the authors which is not reported

in their publication

Besides detailed description in the method section, the reporting of

results should also be standardized. Thus, also for meta-analytic ap-

proaches test statistics and descriptive statistics should be reported.

Furthermore, it is desirable that results are made available for the

neuroscience community. In particular, sharing the meta-analytic re-

sults, e.g. on an open source platform such as ANIMA (http://anima.fz-

juelich.de/) (Reid et al., 2016) or Neurovault (http://neurovault.org/)

(Gorgolewski et al., 2015), allows other authors to compare their own

results with meta-analytic clusters. In addition, not only sharing of

meta-analytic results but also sharing of all the extracted data is very

useful for the neuroimaging community. For example, it is not only

possible to extract data from the BrainMap database but also to submit

data to it. Thus, data manually gathered for the purpose of a meta-

analysis can be contributed to the database.

In summary, publication of meta-analysis should be detailed and

transparent including all the information necessary to allow replication

of the study.

3. How to discuss the results of coordinate-based meta-analysis in

terms of convergence

Finally, we want to raise the issue of how coordinate-based meta-

analytic results can be interpreted. In general, neuroimaging meta-

analyses consolidate the findings of different experiments that report

activation (in task-based fMRI meta-analysis) or gray matter (in VBM

meta-analysis) differences between conditions or groups. However, this

specific difference information, that is the sign of the effect, of in-

dividual neuroimaging experiments is, strictly speaking, lost in a co-

ordinate-based meta-analysis. Importantly, for image-based meta-ana-

lyses and ES-SDM, information about activation/deactivation is still

preserved. Thus, results of image-based approaches can still be inter-

preted as strength of decrease/increase of activation or gray matter. In

contrast, coordinate-based meta-analytic approaches always test for

spatial convergence of neuroimaging findings across experiments in the

specific null space. This implies that significant effects can only be in-

terpreted as convergence but not as strength or decrease/increase of

activation or gray matter. For example, let’s assume that the meta-

analysis across experiments reporting greater activation in a No-Go

compared to a Go condition reveals a significant convergence in the

right anterior insula. From this result one can conclude that experi-

ments testing for greater activation in a No-Go compared to a Go

condition converge in the right anterior insula, or in other words, that

greater activation for No-Go compared to Go conditions is more fre-

quently reported in the right anterior insula than in the remaining gray

matter +/− white matter and cerebrospinal fluid. Nevertheless, results

are often discussed as increased or decreased activations/gray matter,

which is conceptually incorrect.

Similarly, when calculating contrasts between coordinate-based

meta-analyses, the results can only be interpreted in terms of stronger

convergence and not as activation/gray matter differences (again, this

does not apply to image-based meta-analyses or ES-SDM). Let’s again

take an example where two meta-analyses are performed, one across

Go/No-Go experiments and one across Stop-Signal experiments and

then a contrast between those two meta-analyses is performed. From

this contrast analysis one cannot derive brain regions showing stronger

activity in the Go/No-Go compared to the Stop-Signal task, but rather

regions where there is significantly stronger convergence of experi-

ments of the one compared to the other task. It is very likely that a

meta-analytic contrast very well reflects results of contrasts of in-

dividual neuroimaging experiments. However, a coordinate-based

meta-analytic contrast-analysis is only testing for differences in con-

vergence and should be interpreted in this way.

Therefore, as many coordinate-based neuroimaging meta-analysis

approaches look for convergence of neuroimaging findings across ex-

periments, results should be interpreted in terms of convergence or as

regions that are consistently found to be associated to a specific process

or group across experiments in the null space. Image-based meta-ana-

lyses do not suffer from this limitation, which provides yet another

incentive for researchers to adopt such procedures whenever possible.

4. Open issues

Even though there are general best-practice recommendations we

can give for neuroimaging meta-analyses, there are still some aspects

that need to be further discussed.

First, there is the problem of publication bias that should be ad-

dressed. That is, there is in general in science a bias to publish mainly

significant results while experiments failing to reject the null-hypoth-

esis are often not reported (Ioannidis et al., 2014; Rosenthal, 1979). For

conventional effect-size meta-analyses this file-drawer problem can be

detected and has major implications and should always be considered

when interpreting results (Ahmed et al., 2012; Kicinski, 2014). How-

ever, coordinate-based neuroimaging meta-analyses are conceptually

different, testing for spatial convergence of effects across experiments

with the null-hypothesis of random spatial convergence (Rottschy et al.,

2012). Thus, a limitation of most coordinate-based algorithms (not for

ES-SDM) is that they are insensitive to non-significant results and

publication bias may go unnoticed. It is therefore particularly important

to be transparent in reporting. Additionally, in neuroimaging meta-

analyses the publication bias may derive rather from the pressure that

every (expensive) imaging study must always yield “something to

publish”. That is, due to the high analytical flexibility in neuroimaging

(Carp, 2012), different ways of data-analysis, inference and thresh-

olding might be used until a (desired) significant result is found. This

might lead to a publication bias of less relevant and possibly random

results, which, unfortunately, also affect the outcome of meta-analyses,

leading to more heterogeneity and thus less likelihood to find sig-

nificant convergence. In this context, the confirmation bias might also

play a role. That is, the (unconscious) habit to search, interpret and

publish data in a way that it is in line with existing theories and hy-

potheses (Forstmeier et al., 2017). That is, results may be more likely to

be published if they conform with brain regions that are thought to be

involved in a specific process. Thus, in neuroimaging meta-analyses,

besides the classical publication bias, the confirmation bias as well as

analytical flexibility play a crucial role which may lead to publication of

more random results.

Another aspect to consider is the handling and inclusion of so-called

“grey literature”. When conducting a meta-analysis, especially with

research questions where only a few experiments exist, one may con-

sider contacting authors to get additional results and coordinates. On

the one hand, there is the possibility to decide to only consolidate re-

sults that are published (e.g., Cieslik et al., 2016) and thus to only in-

clude experiments that have passed a peer-review process. However, on

the other hand, there is also the legitimate decision to include also

unpublished data (e.g., Langner and Eickhoff, 2013) in order to increase

the number of experiments and to get more appropriate contrasts.

There is no general rule or recommendation we can give with regard to

this decision. However, no matter the decision, one should always be

transparent, i.e. report in the method section of the publication all in-

formation that was additionally included but not provided in the ori-

ginal publication.

5. Summary

Conducting a meta-analysis at first glance seems straightforward.

However, when reviewing the literature and coding the experiments

problems may arise which authors may handle different. This can lead

to diversity between different meta-analyses investigating the same

topic (see also Müller et al., 2017). Thus, meta-analyses require a
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consistent approach if they are to be interpretable. We here tried to

formulate some best practice rules that should be applied when con-

ducting a neuroimaging meta-analysis. However, meta-analyses will

always involve to some extent subjective decisions, which may account

for the diversity of included experiments and results. It is essential that

these subjective decisions and their motivation are transparently re-

ported in the publication of the meta-analysis. Therefore, in order to be

able to fully reconstruct a meta-analysis, detailed description of inclu-

sion/exclusion criteria and their motivation as well precise reporting of

included papers and contrasts and of analyses conducted are needed.

Prior registration of the study protocol in a public database, such as

PROSPERO, allows for maximum transparency and traceability. Fig. 1

illustrates the important steps when conducting a meta-analysis, while

Table 1 provides a formal checklist of all the aspects a researcher per-

forming a meta-analysis should consider. We recommend all authors of

neuroimaging meta-analyses to fill out this checklist and provide as

supplemental material in their papers.
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