000840405 001__ 840405
000840405 005__ 20210129231829.0
000840405 0247_ $$2Handle$$a2128/16128
000840405 037__ $$aFZJ-2017-07937
000840405 1001_ $$0P:(DE-HGF)0$$aCumming, Ben$$b0
000840405 1112_ $$aNeuroscience 2017: Society for Neuroscience$$cWashington, DC$$d2017-11-15 - 2017-11-15$$wUnited States
000840405 245__ $$aArbor: A morphologically detailed neural network simulator for modern high performance computer architectures
000840405 260__ $$c2017
000840405 3367_ $$033$$2EndNote$$aConference Paper
000840405 3367_ $$2BibTeX$$aINPROCEEDINGS
000840405 3367_ $$2DRIVER$$aconferenceObject
000840405 3367_ $$2ORCID$$aCONFERENCE_POSTER
000840405 3367_ $$2DataCite$$aOutput Types/Conference Poster
000840405 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1587374418_5745$$xOther
000840405 520__ $$aArbor is a new multicompartment neural network simulator currently under development as a collaboration between the Neuroscience SimLab at the Forschungszentrum Jülich, Barcelona Supercomputing Center and the Swiss National Supercomputing Center. Arbor will enable new scales and classes of morphologically detailed neuronal network simulations on current and future supercomputing architectures such as the Human Brain Project SCs. A number of many-core architectures such as GPU and Intel Xeon Phi based systems are available. To optimally use these emerging architectures, new approaches in software development are needed. Arbor is being written specifically with performance for this hardware in mind 1; it aims to be a flexible platform for neural network simulation while keeping interoperability with models and workflows developed for NEST and NEURON. Improvements in performance and flexibility will enable a variety of novel experiments. The design is not yet finalized and is driven by the requirements of the neuroscientific community. The prototype is open source (https://github.com/eth-cscs/nestmc-proto). Build this next generation neurosimulator together with us! • Simulate large morphological detailed networks for longer time scales: Study slowly developing phenomena.• Reduce the time to solution: Perform more repeat experiments for increased statistical power. • Create high performance interfaces with other software: Perform online statistical analysis and visualization of your running models, study the brain at multiple scales with specialized tools or embed detailed networks in physically modelled animals. • Optimize dynamic structures for models with time-varying number of neurons, synapses and compartments: simulate neuronal development, healing after injury and age related neuronal degeneration.
000840405 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000840405 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000840405 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000840405 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000840405 7001_ $$0P:(DE-HGF)0$$aYates, Stuart$$b1
000840405 7001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b2$$ufzj
000840405 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b3$$eCorresponding author$$ufzj
000840405 7001_ $$0P:(DE-HGF)0$$aKarakasis, Vasileios$$b4
000840405 7001_ $$0P:(DE-HGF)0$$aPerez, Ivan Martinez$$b5
000840405 8564_ $$uhttps://juser.fz-juelich.de/record/840405/files/poster-2.pdf$$yOpenAccess
000840405 8564_ $$uhttps://juser.fz-juelich.de/record/840405/files/poster-2.gif?subformat=icon$$xicon$$yOpenAccess
000840405 8564_ $$uhttps://juser.fz-juelich.de/record/840405/files/poster-2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840405 8564_ $$uhttps://juser.fz-juelich.de/record/840405/files/poster-2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840405 8564_ $$uhttps://juser.fz-juelich.de/record/840405/files/poster-2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840405 8564_ $$uhttps://juser.fz-juelich.de/record/840405/files/poster-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840405 909CO $$ooai:juser.fz-juelich.de:840405$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000840405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b2$$kFZJ
000840405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b3$$kFZJ
000840405 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000840405 9141_ $$y2017
000840405 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840405 920__ $$lyes
000840405 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000840405 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000840405 980__ $$aposter
000840405 980__ $$aVDB
000840405 980__ $$aI:(DE-Juel1)JSC-20090406
000840405 980__ $$aI:(DE-82)080012_20140620
000840405 980__ $$aUNRESTRICTED
000840405 9801_ $$aFullTexts