
Arbor
A morphologically detailed neural network simulator for modern high performance computer architectures

Ben Cumminga, Stuart Yatesa , Wouter Klijnb, Alexander Peyserb, Vasileios Karakasisa, Ivan Martinez Perezc

aSwiss National Supercomputing Center b Simulation Lab Neuroscience, IAS, JARA, Forschungszentrum Jülich cBarcelona Supercomputing Center

Heterogeneous many-core HPC architectures are the new norm

The HBP PCP pilot systems at Jülich. Both are a radical departure from multicore systems.
left: IBM “fat node” with Power8 CPUs and 4 GPUs. right: Cray XC “blade” with 4 Intel KNL nodes.

These new architectures are already ubiquitous – we need to develop simulators designed to exploit these
architectures now. Arbor aims to meet this need, alongside other efforts to add many core support to
existing software. Designing software from the ground-up for heterogeneous and many-core systems will
pay off in the medium to long term.

What is Arbor?

Arbor is developed by a team from HPC centers:

• CSCS, Jülich and BSC in WP 7.5.4
• Aim is to prepare neuroscience users for new

HPC architectures

Arbor is designed from the ground up

for many core architectures:

• Written in C++11 and CUDA
• Using MPI, TBB and C++11 threads
• Open source and open development
• Sound development practices: unit testing, con-

tinuous integration, and validation

Progress & features

Highlights of progress since the last HBP Summit:

• Optimized back ends for CUDA, KNL and AVX2
• Asynchronous spike exchange that overlaps

compute and communication
• Efficient sampling of voltage and current on all

back ends
• Efficient implementation of all features on GPU
• Reporting of memory and energy consumption

(when available on platform)
• An API for addition of new cell types, e.g. LIF

neurons and Poisson spike generators
• Validation tests against numeric/analytic mod-

els and NEURON

Parallel model and network construction

In Arbor models are described by recipes:

• Provide a functional model description
• Lazy generation of cell attributes to be processed

in parallel by a load balancer
• Work and memory requirements per node are pro-

portional to cells-per node
• Low resource requirements mean model building

and simulation need not be separated

Time to build model (20’600 cells/node)

1 4 16 64 256 1024 4096 163843

3.5

4

21.6k cells

1.3M cells
353M cells

nodes

ti
m

e
(s

)

MPI

dry run

Code generation

Performance portability presents two challenges:

1. Efficient cell state integration requires
hardware-specific implementations

2. Extensibility demands that new ion channels or
synapse models can be provided by simulator
users

Solution: Use NMODL to describe mathematics
and generate optimized code from that for each
platform

Current backends

CUDA (NVIDA), AVX512 (KNL & Sky Lake),
AVX2 (Haswell & Broadwell) and generic C++

Key hardware-specific features:

• CUDA fast key-value reduction for synapse cur-
rent collection

• AVX2 vectorised transcendentals for GCC and
Clang

• AVX512 vectorised gather and scatter for per-
compartment loads & stores

Resource consumption

The resources used by a simulation can be mea-
sured in different ways:

• Time to solution (TTS): wall time (s)
• Node hours (NH): TTS × nodes/3600
• Energy to solution (ETS): total energy (kJ)

Resource consumption for 590k cells.

daint-mc daint-gpu

nodes TTS NH ETS TTS NH ETS

32 204.0 1.81 1771 176.0 1.56 1159

64 102.4 1.82 1769 89.8 1.60 1169
128 51.7 1.84 1743 47.1 1.67 1194
256 26.8 1.91 1742 25.5 1.82 1247
512 13.5 1.91 1698 15.1 2.15 1374

Resource measurements for strong scaling described in “Performance” section

• GPU maximises user allocation (86% NH re-
quired to run on CPU)

• The GPU uses 65% energy to solution
• CPU can be used when reducing time to solution

is most important

Arbor provides good performance on both systems,
meeting our performance portability requirement.

Performance

daint-mc Cray XC40: 2× 18-core Broadwell per node

daint-gpu Cray XC50: 1×P100 GPU per node

cells 50 compartments & 5000 synapses per cell
Passive dendrites, Hodgkin-Huxley soma

network random

duration 200 ms

Strong Scaling

1 2 4 8 16 32 64 128 256 512
1

4

16

64

256

174 s

211 s

5.1 s

2.2 s

176 s

204 s

nodes

w
al

l
ti
m

e
(s

)

gpu 18k

mc 18k

gpu 590k

mc 590k

Time to solution on CPU and GPU for models with

18’000 and 590’000 cells. GPU performance is better

in "throughput mode", i.e. with more cells per node,

while CPU is faster with fewer cells per node.

Weak Scaling

1 2 4 8 16 32 64 128 256

40

45
4’000 cells

1’014’000 cells

nodes

w
al

l
ti
m

e
(s

)

daint-gpu

daint-mc

Time to solution with 4000 cells per node, as the num-

ber of nodes is increased. Run time increases by less

than 25% when the problem is scaled by 256×. Ar-

bor has a dry-run mode that was used to tune scaling

issues with many nodes.

Optimization: Updating Membrane
Currents on GPU

1 10 100 1000

100

10000

1000000

1.7×

2.4×

11.4×

blue insets: atomics run time / reduce run time

synapses per compartment

ti
m

e
(m

s)

CUDA atomics

reduce-by-key

Time taken to update 10’000 compartments as the

number of synapses per compartment varies. Race

conditions occur when multiple synapses on the same

compartment update compartment current simultane-

ously. Arbor has an optimized reduce-by-key operation

that improves performance over naive CUDA atomics

when many synapses are attached to the same com-

partment.

Get in touch!

source github.com/eth-cscs/arbor

email bcumming@cscs.ch
a.peyser@fz-juelich.de


