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In the model of gate-based quantum computation, the qubits are controlled by a sequence of
quantum gates. In superconducting qubit systems, these gates can be implemented by voltage
pulses. The success of implementing a particular gate can be expressed by various metrics such
as the average gate fidelity, the diamond distance, and the unitarity. We analyze these metrics
of gate pulses for a system of two superconducting transmon qubits coupled by a resonator, a
system inspired by the architecture of the IBM Quantum Experience. The metrics are obtained
by numerical solution of the time-dependent Schrödinger equation of the transmon system. We
find that the metrics reflect systematic errors that are most pronounced for echoed cross-resonance
gates, but that none of the studied metrics can reliably predict the performance of a gate when used
repeatedly in a quantum algorithm.
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I. INTRODUCTION

Over the last decades, tremendous effort has gone into
building a universal quantum computer. In theory, such
a device can solve certain problems, such as factoring, ex-
ponentially faster than classical digital computers. The
leading technological prototypes are based on supercon-
ducting transmon qubits containing on the order of 10
qubits [1–4]. IBM provides public access to such a quan-
tum processor through the IBM Quantum Experience
(IBMQX) [5].

However, as reported in a recent independent bench-
mark [6], IBM’s five-qubit quantum processor does not
yet meet the fundamental requirements for a computing
device. For this reason, the underlying architecture and
its operation call for a deeper analysis, one that goes be-
yond perturbation theory, rotating wave approximations,
and assumptions about Lindblad forms and Markovian
dynamics [7].

We study the real-time dynamics of such quantum sys-
tems in detail by solving the time-dependent Schrödinger
equation (TDSE) for a generic model Hamiltonian. For
this purpose, we have developed efficient product-formula
algorithms that are tailored to key features of the model
Hamiltonian [8]. This allows us to simulate each Gaus-
sian control pulse that is used in experiments to realize a
certain quantum gate, as dictated by the computational
model of a quantum computer. We have implemented
a parameter optimization scheme for obtaining the best
pulse parameters for the gates on the transmon system.
This scheme makes use of the fact that in the simulation,
we have the advantage of getting the full information of
the system dynamics at any time t. In brief, the simu-
lated system can be seen as a faithful model of an ideal
quantum processor that works exactly as quantum theory
dictates.

In this paper, we limit the analysis to two transmons
coupled by one resonator as fundamental errors can be
best understood for a small system containing only the
basic constituents. For the implemented gates, we eval-
uate the average gate fidelity [9], the diamond distance
[10], and the unitarity [11]. The obtained gate fidelities
agree with those reported in state-of-the-art experiments
[12–15]. However, we find that the diamond error rates of
all gates are larger than 2% (see also [7]). The precision of
the gates is limited by the presence of non-computational
states in the transmons and the resonator. The corre-
sponding errors occur naturally in the unitary evolution
of the total system, but they have a detrimental effect
on the computational subspace. For instance, we find
that they appear incoherent when looking at the compu-
tational subspace only, and they cannot be represented
by Pauli channels [16].

In particular, for CNOT gates based on echoed cross-
resonance pulses [17–19], we find a systematic error that
can be reproduced in experiments on the IBMQX. We
also propose a different, one-pulse CNOT gate that does
not suffer from this error.

The paper is structured as follows. In Section II, we
describe the simulation model and explain how quantum
gates are implemented by microwave pulses. This sec-
tion also sketches the optimization procedure that we use
to find optimal pulses for the qubit system. Section III
gives a summary of the gate metrics that frequently serve
as error rates in experimental and theoretical studies.
In Section IV, we present the gate metrics of the opti-
mized pulses and analyze their behavior with respect to
repeated applications of the gates. Additionally, we per-
form identity operations and entanglement experiments
as proposed in [6] to compare the performance of the gate
sets with “real” quantum programs. Conclusions drawn
from our analysis are given in Section V.



2

TABLE I. Parameters for the model Hamiltonian given in
Eqs. (1)–(3), inspired by the device parameters of the quan-
tum processor of the IBMQX [5]. All energies are expressed
in GHz (~ = 1). The CPB qubits are operated in the trans-
mon regime with EJi/ECi ≈ 10, and their frequencies ωi
and anharmonicities αi resulting from diagonalizing the CPB
Hamiltonian are given for reference. The resonator operates
at frequency ωr/2π = 7 GHz. Its coupling to the qubits is
weak as |gi| � |ωi − ωr|.

Qubit i ECi/2π EJi/2π ωi/2π αi/2π gi/2π

1 1.204 13.349 5.350 −0.350 0.07

2 1.204 12.292 5.120 −0.353 0.07

II. SIMULATION MODEL AND METHOD

We consider a system of superconducting transmon
qubits [20]. The transmons are coupled by a transmission
line resonator, which is essentially a quantum harmonic
oscillator [21]. The publicly accessible five-qubit quan-
tum processor of the IBMQX is of this type [5].

The model Hamiltonian of a system of N transmons
coupled to a resonator reads [20]

H = HCPB +HRes, (1)

HCPB =

N∑
i=1

[
ECi(n̂i − ngi(t))2 − EJi cos ϕ̂i

]
, (2)

HRes = ωrâ
†â+

N∑
i=1

gin̂i(â+ â†). (3)

Here, HCPB describes the Cooper pair box (CPB) qubits
whose capacitive energies ECi and Josephson energies
EJi are set in the transmon regime [20], n̂i is the number
operator of qubit i, and the bounded phase operator ϕ̂i
is its conjugate. The qubits are controlled by the exter-
nal control field ngi(t), which is directly proportional to
the voltage pulses applied to the qubit. Thus, quantum
gates are implemented by choosing a certain pulse form
for ngi(t) (see [22, 23]). The resonator is described by
raising and lowering operators â† and â, respectively. It
operates at the microwave frequency ωr and its capacitive
coupling strength to the qubits is given by gi.

The values of the parameters in Eqs. (1)–(3) are given
in Table I. In what follows, we consider the case N = 2 as
the key results are most clearly demonstrated for a small
isolated system of qubits.

The dynamics of the joint system of the two transmons
and the resonator can be obtained by studying the time
evolution of the state |Ψ(t)〉 of the system. This state is
the solution of the TDSE (~ = 1)

i
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (4)

for the Hamiltonian given in Eq. (1). We obtain the so-
lution numerically by implementing a product-formula

algorithm for the total unitary time-evolution operator
Utotal(t) defined by |Ψ(t)〉 = Utotal(t) |Ψ(0)〉 (see Ap-
pendix A for details on the algorithm). This solution is
expanded in the product basis |k〉|m1〉|m2〉 where k is the
number of photons in the resonator, and mi = 0, 1, 2, . . .
label the transmon eigenstates (i.e., the eigenstates of
HCPB given by Eq. (2) for ngi(t) = 0) of qubit i = 1, 2.
Thus, the result of the simulation is the set of coefficients
akm1m2(t) defined by

|Ψ(t)〉 =
∑

km1m2

akm1m2
(t) |k〉|m1〉|m2〉 . (5)

The system is initialized in a computational basis state
|Ψ(0)〉 = |m1m2〉, where the computational subspace
is defined by |m1m2〉 = |k = 0〉|m1〉|m2〉 for m1,m2 ∈
{0, 1}. Note that the simulation explicitly includes non-
computational states outside of this subspace.

A. Quantum gates

For architectures of the transmon type, quantum gates
are implemented by applying microwave voltage pulses to
the qubits. This is mathematically modeled through the
control fields ngi(t) in Eq. (2). We consider a generic
sum of shaped microwave pulses applied on each qubit
as described in [23], namely

ngi(t) =
∑
j

Ωij(t) cos(ωdr
ij t− γij), (6)

where Ωij(t) is the envelope of pulse j on qubit i, ωdr
ij

is the corresponding drive frequency, and γij is an offset
phase. To model a situation close to experiments (cf.
[22, 24]), the envelopes Ωij(t) are Gaussians of the form

ΩG(t) = Ω0

exp
(
− (t−T/2)2

2σ2

)
− exp

(
− T 2

8σ2

)
1− exp

(
− T 2

8σ2

) , (7)

where Ω0 is the amplitude and T the time of the pulse,
and σ = T/4 defines the width of the Gaussian.

The drive frequencies ωdr
ij in Eq. (6) are usually set

to one of the qubit frequencies ωi (see Table I). How-
ever, as the presence of the resonator can slightly shift
these frequencies [21], we adjust ωi by measuring local
rotations of the qubits in the lab frame. We do this
by initializing the system in the state |Ψ(0)〉 = |++〉
with |+〉 = (|0〉+ |1〉)/

√
2 and letting it evolve freely for

4000 ns. On the respective Bloch spheres, both qubits
then rotate about the z-axis. The frequencies of these
rotations yield the shifted qubit frequencies ω̄i. We ob-
tain ω̄1/2π = 5.346 GHz and ω̄2/2π = 5.118 GHz.

The computational states of the qubits at some time
t > 0 are defined in a so-called locally rotating frame
R [16, 22]. This essentially removes the just mentioned
rotation, so that the state |++〉 remains unchanged if
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no quantum gate is applied. Mathematically, this is im-
plemented by multiplying the coefficients of the solution
given in Eq. (5) by time-dependent phase factors, yield-
ing aRkm1m2

(t) := exp(it(ω̄1m1 + ω̄2m2))akm1m2
(t).

We have implemented the same quantum gate set as
supported by the IBMQX [25]. Accordingly, a typical
quantum gate sequence takes between 50 ns and 15µs.
In the following, we explain how the pulses are defined
and modeled.

1. Single-qubit gates

Single-qubit rotations on the Bloch sphere can be re-
alized by applying a Gaussian pulse with drive frequency
ωdr
i = ω̄i on qubit i (see Eqs. (6) and (7)). In this case,

the amplitude Ω0 and the phase γ define the angle and
the axis of rotation, respectively [22] (e.g. γ = 0 for ro-
tations about the x-axis, or γ = π/2 for rotations about
the y-axis).

We utilize the virtual Z-gate (VZ gate) described in
[23] and used in the IBMQX [5] to implement rotations
about the z-axis. This means that instead of applying
another pulse, we simply change the phase γ of all the
following pulses (see Appendix B for details).

Unfortunately, as transmons cannot be represented by
ideal two-level systems, such pulses may induce leakage
out of the computational subspace, meaning that the so-
lution in Eq. (5) also has contributions from higher levels
such as |mi = 2〉. This effect can be mitigated by includ-
ing another pulse in Eq. (6) proportional to the deriva-

tive Ω̇G(t) with a phase shift of π/2. This technique
goes under the name of DRAG and has become standard
for transmon systems [24, 26]. Therefore we also adopt
DRAG in defining the pulses.

For the single-qubit gates, we take T = 83 ns for the
gate duration of the Gaussian envelope ΩG(t) given by
Eq. (7), inspired by the choice made for the IBMQX [5].

In summary, a single-qubit pulse on qubit i is defined
by

ngi(t) = ΩG(t) cos(ω̄it− γ) + βΩ̇G(t) cos(ω̄it− γ −
π

2
),

(8)

with the parameters (Ω0, β, γ) being the amplitude, the
DRAG coefficient, and the phase, respectively (see Ap-
pendix B for the theory behind these parameters). As
outlined below, we optimize the pulse parameters to im-
plement ideal single-qubit rotations of the type Xπ/2 and
Xπ. The former serves as a primitive to generate ar-
bitrary single-qubit gates as in experiments [23]. The
latter is used exclusively as a component in the echoed
two-qubit gates.

Control
CR1

Target

Control
CR2

Target

Control
CR4

Target

FIG. 1. Pulse sequences for the three different realizations of a
CNOT gate studied in this paper. Gaussians implement Xπ/2
and Xπ rotations, and flat-topped Gaussians represent cross-
resonance (CR) pulses (i.e., they oscillate at the frequency
ω̄T of the target qubit). The CR1 gate consists only of flat-
topped Gaussian pulses at the target frequency ω̄T . The CR2
gate is an echoed CR gate containing two additionalXπ pulses
on the control qubit and one Xπ/2 pulse on the target qubit.
The CR4 gate is a four-pulse echoed CR gate that contains
an additional Xπ pulse on the target qubit. See Fig. 6 in
Appendix B for the full pulse specifications.

2. Two-qubit gates

We implement the CNOT gate by making use of the
cross-resonance (CR) effect [17, 18]. The basic idea sim-
ply amounts to applying another Gaussian pulse to the
control qubit C = 1, 2 but at the drive frequency ω̄T
of the target qubit T 6= C. Furthermore, the pulse is
stretched over a longer time period such that the Gaus-
sian in Eq. (7) becomes a flat-topped Gaussian with 3σ
rise time where σ = 5 ns (cf. [13]).

Various schemes have been used in experiments to con-
struct a CNOT gate based on the CR effect [13, 19, 27–
29]. We implement three particularly interesting repre-
sentatives to compare their performance with the perfor-
mance of the ideal system. The first is a simple one-pulse
CR gate (CR1) that we found by including an additional
driving of the target qubit, inspired by the observation
in [13] (see Fig. 5 in Appendix B for details). The sec-
ond is a two-pulse echoed CR gate (CR2) which is cur-
rently also used on the five-qubit quantum processor of
the IBMQX [5]. The third is a four-pulse echoed CR gate
(CR4) that has recently shown better performance (al-
beit worse fidelity) for an experiment on quantum error-
detecting codes [29]. The pulse sequences of the three
CNOT gates are summarized in Fig. 1.

The pulse parameters such as amplitudes, times, and
phases for each sequence are scanned over ranges sug-
gested by the theory. As in the case of single-qubit gates,
this provides initial values for the pulse optimization pro-
cedure.
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B. Pulse optimization

The goal of applying the control pulses is to real-
ize a certain transformation U (the unitary quantum
gate) on the computational subspace. For two qubits,
this subspace is spanned by the computational basis
{|00〉 , |01〉 , |10〉 , |11〉}, so U is essentially a complex 4×4
matrix. Examples for U are Xi

π/2 (a π/2 rotation of qubit

i about the x-axis) or CNOTij (a controlled NOT oper-
ation where i, j with i 6= j denote the control and the
target qubit, respectively) [16].

As the simulation produces the full state |Ψ(t)〉 given
by Eq. (5), we can construct the actual transformation
matrix M implemented by a certain pulse. We do this
by initializing |Ψ(0)〉 in each of the four computational
basis states, evolving the system under the application
of the pulse according to Eq. (4), and extracting the four
complex coefficients a000 through a011 from the solution
given by Eq. (5) (formally, M is a 4×4 block of the total
time-evolution operator Utotal(t), see Eq. (A1)). Each
run for one of the four computational basis states pro-
duces one column of M , including the complex phases
that each basis state acquires in the time evolution. The
four runs can be performed in parallel.

The aim is to find ideal pulse parameters so that the
computational matrix M approaches the ideal gate ma-
trix U , up to a global phase. Note that the computa-
tional space is a subspace of the whole Hilbert space
H = span{|k〉|m1〉|m2〉}, so it is by no means clear that
M will be unitary (and in almost all cases, it is not).

We use a multidimensional optimization scheme in-
troduced by Nelder and Mead [30, 31] to optimize the
pulse parameters. Note that we only use the optimization
procedure to refine the initial pulse parameters obtained
from the theory [13, 23, 26] (see also Appendix B). The
objective function to be minimized is given by

∆(M,U) = ‖M − zU‖2F , (9)

where ‖·‖F is the Frobenius norm, and z =

±
√

Tr(MU†)/Tr(MU†)∗ is a phase factor that minimizes
the global phase difference between both matrices. We
have tested other gate error rates as objective functions
(see Section III) and found that Eq. (9) produces the best
results.

After optimizing the pulse parameters, we further im-
prove the gates using the VZ phase correction to com-
pensate for off-resonant rotation errors etc. [23] (see Ap-
pendix B for details).

III. GATE ERROR RATES

Various quantities have been used in experiments and
studied in the literature to measure the success of imple-
menting a quantum gate by a certain control pulse [32].
Some of these measures are motivated by their simplicity

and straightforwardness in the experimental implemen-
tation (e.g. average gate fidelity [9]), while others such as
the diamond distance stem from mathematical consider-
ations [10]. As recently demonstrated by Sanders et al.
[33], the relation between fidelity and diamond distance is
not direct in that the impressively high fidelities reported
in experiments are not sufficient for fault-tolerant quan-
tum computation, in contrast to claims made by other
groups [14, 34]

In the following, we give an overview of the three met-
rics that we have selected to assess the quality of quantum
gates. Evaluating these metrics requires the definition
of appropriate quantum channels, which are completely
positive (CP) linear maps on the space of density op-
erators ρ [35]. For a two-qubit system, ρ is a Hermitian
4×4 matrix. Using the language from Section II B where
U denotes the ideal unitary gate matrix and M denotes
the actual transformation implemented on the computa-
tional subspace, we define the ideal quantum channel Gid
and the actual quantum channel Gac as

Gid(ρ) = UρU†, (10)

Gac(ρ) = MρM†. (11)

It can easily be seen that both maps are CP. However,
note that in most cases M† 6= M−1 because of additional
non-computational states present in transmon systems.
This implies that Gac is not trace-preserving (the alter-
native channel MρM−1 does not preserve Hermiticity).

For convenience, we define the discrepancy channel
D(ρ) = Gac(G−1id (ρ)) which approaches unity for a per-
fect control pulse.

A. Average gate fidelity

The average gate fidelity is defined as [9]

Favg =

∫
d|ψ〉 〈ψ| D(|ψ〉〈ψ|) |ψ〉 . (12)

In general, we have 0 ≤ Favg ≤ 1, and the maximum
fidelity Favg = 1 is attained in the ideal case where the
discrepancy channel D is unity.

In experiments, this number is estimated by a protocol
called randomized benchmarking (RB) [36, 37]. However,
as in our simulation we have access to the error chan-
nel given by Eq. (11), we do not need to implement the
RB protocol. Instead, we evaluate Eq. (12) directly by
sampling the integrand and averaging it over states from
the computational subspace, as done in [38]. Specifically,
we generate 100,000 random states |ψ〉 =

∑
ij cij |ij〉 by

drawing real and imaginary parts of cij from a normal
distribution and normalizing the state afterwards.
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B. Diamond distance

The error rate of a quantum operation is defined in
terms of the diamond distance [33]

η♦ =
1

2
‖D − 11‖♦ . (13)

This quantity is mathematically relevant for the thresh-
old theorem [39] that is often cited in the literature to
argue that arbitrarily long, fault-tolerant quantum com-
putation is possible. The best known quantum error-
correcting codes require η♦ to be on the order of 1% or
less [33].

Evaluating Eq. (13) is nontrivial as the diamond norm
of a superoperator A is defined by maximizing the trace
norm ‖·‖Tr over all ancillary Hilbert spaces H′ and all
joint density operators on H⊗H′ [10, 33]. However, one
can show that this is equivalent to minimizing over all
generalized Choi-Kraus representations of A [40]. As we
have A(ρ) = MU†ρUM†−ρ, this amounts to computing

η♦ =
1

2
inf
S


∥∥∥∥∥(UM†, −11

)
S−†S−1

(
MU†

−11

)∥∥∥∥∥
1/2

2

∗
∥∥∥∥∥(UM†, 11

)
SS†

(
MU†

11

)∥∥∥∥∥
1/2

2

 . (14)

Here, ‖·‖2 denotes the matrix 2-norm (i.e. the maximum
singular value [41]), and S is an invertible complex 2× 2
matrix. We solve this minimization problem by first sam-
pling over 10,000 random matrices S and then running
the same optimization procedure that we already imple-
mented for the pulse optimization in Section II B. This
scheme was found to produce reliable results, equal to the
exact η♦ up to two significant digits for all tested cases
for which we found closed expressions (see [40]).

There are two asymptotically tight bounds for the error
rate η♦ in terms of the average gate fidelity Favg given
by Eq. (12) [33], namely

ηPauli♦ =
d+ 1

d
(1− Favg), (15)

ηub♦ =
√
d(d+ 1)(1− Favg), (16)

for which we have ηPauli♦ ≤ η♦ ≤ ηub♦ . In these expres-

sions, d = 2N = 4 is the dimension of the computational
subspace. The upper bound leads to the estimate that
two-qubit gates need to reach a fidelity of 0.999995 in
order to qualify for fault-tolerant quantum computation
with known quantum error-correcting codes [33]. The
lower bound is saturated if the error is a Pauli channel,
and the difference η♦−ηPauli♦ represents the “badness” of
the noise. We shall see that all gates under investigation
yield η♦ � ηPauli♦ .

C. Unitarity

For transmon qubits, leakage into higher non-
computational levels during the application of a pulse
is a known problem [38, 42]. Mathematically, this leads
to the situation that the evolution of the computational
subspace is not unitary, resulting in M† 6= M−1 and thus
TrGac(ρ) < Tr ρ in terms of Eq. (11), so the process is
not trace-preserving. To quantify such effects, Wallman
et al. have proposed a quantity called unitarity [11] given
by

u =
d

d− 1

∫
d|ψ〉 Tr

[
G′ac(|ψ〉〈ψ|)†G′ac(|ψ〉〈ψ|)

]
, (17)

where G′ac(ρ) = Gac(ρ− 11/d)− Tr [Gac(ρ− 11/d)] /
√
d.

Note that by construction, the errors we observe are
systematic, unitary, and coherent (in the sense of [11])
on the total Hilbert space H. Hence this quantity char-
acterizes how incoherent these errors appear on the com-
putational subspace.

The integral in Eq. (17) is evaluated in the same way
as the average gate fidelity given in Eq. (12).

IV. RESULTS

In this section, we analyze the performance of the op-
timized single-qubit and two-qubit quantum gate sets.
First, we evaluate the gate metrics described in the pre-
vious section. Then we study the repeated application
of gates that mathematically constitute identity opera-
tions. Finally, we repeat a set of quantum entanglement
experiments to compare the simulated results with the
corresponding experimental results obtained on the IB-
MQX [6].

A. Gate metrics

The gate metrics of the optimized pulses are given in
Table II. The overall performance of the pulses is close
to optimal but still not perfect. Especially the error rate
η♦ given by Eq. (13) is always bounded above 2%, even
though our quantum-theoretical model of the transmon
qubit architecture does not account for decoherence or
noise. The average gate fidelities are in the same ball-
park as those reported for experiments based on the same
pulse schemes [1, 12–15]. In fact, the single-qubit gate
fidelities are slightly worse than the ones reported in ex-
periments. We shall see below, however, that the actual
performance of the gates in quantum circuits is much
better. We also observed similar gate metrics for shorter
single-qubit gates of about T = 10 ns, but then the per-
formance of repeated applications of the pulses was worse
(data not shown).

Note that we always find η♦ � ηPauli♦ , so the dominant
errors are non-Pauli errors and belong to the “bad” class
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TABLE II. Gate metrics for the set of optimized quantum gate pulses described in Section II. The distance objective ∆ from
the optimization is given in Eq. (9). The average gate fidelity Favg, the error rates η♦, η

Pauli
♦ , ηub♦ , and the unitarity u are defined

in Eqs. (12), (13), (15), (16), and (17), respectively.

Type Gate T in ns ∆ Favg η♦ ηPauli
♦ ηub♦ u

X

X1
π/2 83 0.0022 0.9946 0.027 0.0068 0.33 0.990

X2
π/2 83 0.0023 0.9942 0.028 0.0073 0.34 0.989

X1
π 83 0.0013 0.9949 0.020 0.0064 0.32 0.990

X2
π 83 0.0015 0.9943 0.023 0.0071 0.34 0.989

CR1
CNOT12 71.865 0.0013 0.9842 0.029 0.0198 0.56 0.969

CNOT21 158.193 0.0023 0.9951 0.033 0.0062 0.31 0.991

CR2
CNOT12 431.949 0.0061 0.9943 0.048 0.0071 0.34 0.991

CNOT21 369.116 0.0056 0.9947 0.048 0.0066 0.32 0.992

CR4
CNOT12 652.954 0.0054 0.9934 0.049 0.0083 0.36 0.989

CNOT21 572.623 0.0045 0.9946 0.044 0.0068 0.33 0.991

TABLE III. Comparison of the error rate η♦ for a single
CNOT12 gate, twenty successive CNOT12 gates, and four suc-
cessive QFT applications. A QFT contains five CNOT gates
and two additional X pulses. The numbers reported are the
error rates defined in Eq. (13), but the same relative trends are
true for the average gate infidelity 1−Favg given by Eq. (12)
and the unitarity u given by Eq. (17).

Pulse CNOT1 CNOT20 QFT4

CR2 0.048 0.73 0.27

CR4 0.049 0.33 0.32

of errors [33]. Interestingly, there is almost one order
of magnitude difference between the actual error rate η♦
and the optimal bounds ηPauli♦ and ηub♦ calculated from
the gate fidelity Favg according to Eqs. (15) and (16).

In Table II, it is also seen that a higher fidelity Favg cor-
responds to a higher unitarity u. From this we conclude
that leakage is still the dominant source of error limiting
the gate fidelity, even though the techniques DRAG [24]
and VZ phase correction [23] have been included in the
construction of the pulses. It seems that the presence
of the resonator and the entangling transverse coupling
cause this limitation (see also [43, 44]).

B. Repeated gate applications

For each gate primitive of our universal gate set, we
study n = 1, . . . , 20 repeated applications of the corre-
sponding pulses on each of the four computational ba-
sis states. After each application of a pulse with to-
tal time T , we construct the full transformation matrix
M(nT ) of the computational subspace as described in
Section II B and compare it with the ideal gate matrix
Un. Interestingly, we observed that the actual transfor-
mation M(nT ) is always closer to Un than the product
M(T )n, which means that the actual pulse performs bet-
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FIG. 2. (Color online) Evolution of the error rate given by
Eq. (13) after n applications of a certain gate. (a) Single-qubit
Gaussian derivative pulses defined by Eq. (8); (b)-(d) two-
qubit CNOT gates based on the cross-resonance effect. While
CR1 includes only one CR pulse on each of the transmons,
CR2 and CR4 employ additional X gates to echo out certain
errors (see Section II and Appendix B).

ter than the transformation M(T ) on the computational
subspace suggests. However, this also means that the
non-computational levels are more significant in the time
evolution than a simple two-state description of a quan-
tum computer can capture (see also [6]).

In Fig. 2, we plot the error rate η♦ given by Eq. (13)
to compare M(nT ) with Un. We choose η♦ because this
quantity is central for fault-tolerant quantum computa-
tion, and it also includes the statistical distance of the
experimentally measurable output distribution [33]. We
observed the same qualitative behavior for the distance
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objective given by Eq. (9) and the average gate infidelity
1− Favg (data not shown).

The single-qubit pulses perform reasonably well. Al-
though the error rates are always above 2% (see Table II),
they stay approximately constant even after successive
applications of the gates (see Fig. 2(a)). For the two-
qubit gates, the error rate already starts growing after
two applications of the CNOT gate (see Fig. 2(b),(c),(d)).
This is most clearly visible for the CR1 gate, for which
the error rate makes a jump after every second applica-
tion. Note that the echoed CNOT gates CR2 and CR4
are found to work equally well if the control and the tar-
get qubit are exchanged. In experiments, usually only
one type of CNOT is implemented because the CR in-
teraction strength is weaker for the other type [5, 28, 29]
(see also Fig. 5 in Appendix B). The best performance is
seen for the four-pulse echoed gate CR4, even though the
gate metrics in Table II do not suggest that. Note that
the same discrepancy between worse metrics and better
actual performance was also observed in recent quantum
error-detection experiments on the IBMQX [29].

As an additional comparison between CR2 and CR4,
we analyze both schemes in four applications of the
Quantum Fourier Transform (QFT). The full circuit for
QFT4 also involves 20 CNOT gates (along with 8 ad-
ditional X pulses, see Appendix C). Based on the error
rates for 20 CNOT gates presented in Fig. 2, we might
be led to believe that CR4 performs better in general.
However, from the results presented in Table III, we see
that this is not true. Hence, the error rate does not pre-
dict the behavior of a gate in actual applications. Note
that the same is true for the average gate infidelity and
the unitarity (data not shown).

It is worth mentioning that the gate with the worst
fidelity and the worst unitarity (CNOT12 from the group
CR1, see Table II) is in fact the fastest and performs
relatively well after repeated use, as demonstrated in
Fig. 2(b). Similarly, the gate with the best fidelity
(CNOT21 from the group CR1) performs worst. This
means that, although the analyzed gate metrics can be
used to study errors in one application of a gate, they do
not characterize the performance of the gates when used
in a quantum circuit (see also [6]).

C. Comparison with the IBM Quantum Experience

As the simulation model is inspired by the quantum
processor of the IBMQX, we perform two experiments
to compare the simulation model with the physical hard-
ware. In this way, the results of the simulated quantum
processor can be directly compared to experimental re-
sults for a device using the same pulse schemes to imple-
ment quantum gates.

The first experiment again involves twenty successive
CNOT gates, but this time we measure the statistical
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FIG. 3. (Color online) Statistical distances between the ideal
result and the measured distribution of states for the circuit
CNOTn12 |ψ〉 with |ψ〉 = |00〉 (stars) and |ψ〉 = |10〉 (circles).
(a) Experimental results on the IBMQX; (b)-(d) simulation
results. Generically, the echoed CNOT versions show worse
performance on state |00〉 than on state |10〉, both in the
experiment and the simulation. Interestingly, this systematic
error is not present in the one-pulse version CR1.
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FIG. 4. (Color online) Results for a set of quantum circuits
creating and characterizing the singlet state (|01〉 − |10〉)/

√
2

as a function of the angles ϑ1 and ϑ2. F1/2(ϑ1, ϑ2) are single-
qubit averages and F (ϑ1, ϑ2) is a two-qubit correlation func-
tion. The corresponding theoretical expectations are given by
E1/2(ϑ1, ϑ2) and E(ϑ1, ϑ2). (a) ϑ1 = 0 fixed and ϑ2 variable;
(b) ϑ1 = ϑ2 variable. Apart from a small systematic deviation
around ϑ1 = ϑ2 = 135, the agreement is almost perfect.

distance

D =
1

2

1∑
i,j=0

|pij − p̃ij |, (18)

between the ideal outcome distribution pij (i.e., the prob-
ability to measure the state |ij〉) and the experimentally
measured relative frequencies p̃ij . The experiment on
the IBMQX was performed with 8192 shots on August



8

17, 2017 using Q3 as the control and Q4 as the target
qubit. The results are presented in Fig. 3.

The simulated CR2 gate gives the best qualitative
agreement between experiment and simulation. This
makes sense because the CR2 pulse scheme shown in
Fig. 1 is also used for the IBMQX [5]. Most remark-
able is the fact that the performance for the initial state
|00〉 is much worse than for |10〉 (see also Table 3 in [6]).
As this also shows up in the ideal simulation, it points to
a systematic error in the implementation of the CNOT
gate. Note that this error is only present in the echoed
gates, and not in the proposed one-pulse gate CR1. The
remaining difference between the CR2 simulation and the
experiment may be due to decoherence by the environ-
ment; we leave the study of including a heat bath in the
simulation to future research.

As a second experiment, we repeat the two-qubit en-
tanglement experiments proposed as part of a benchmark
for gate-based quantum computers [6]. The quantum cir-
cuits first create the maximally entangled singlet state
(|01〉− |10〉)/

√
2 and then apply a set of rotations depen-

dent on the angles ϑ1 and ϑ2 to analyze the constructed
state (see Appendix C for the circuit). We select the two-
pulse echoed CR2 gate for the CNOT operation, as also
done for the IBMQX. We parse programs formulated in
a quantum assembly language similar to the one used by
the IBMQX [25] to run the quantum circuits. The results
are shown in Fig. 4.

Although the gates used in the simulation, which are
in some sense ideal versions of the gates used in experi-
ments, do not reach perfect fidelities or error rates (see
Table II), they still yield almost perfect results for the
entanglement experiments. The results are much closer
to those expected for a singlet state than the correspond-
ing experimental results on the IBMQX [6], even though
the reported fidelities of the latter are the same or even
better. This can have three reasons: (i) the procedure
of measuring the fidelities (i.e., randomized benchmark-
ing) produces numbers that overestimate the gate per-
formance (cf. [33, 45, 46]), implying that the actual gate
implementations are worse; (ii) the actual gates are good
but the discrepancy is due to another process (such as the
measurement) that is not yet included in the simulation
model; or (iii) other unknown factors not included in the
quantum-theoretical description of the experiments play
a destructive role.

V. DISCUSSION

We have implemented algorithms to solve the TDSE
for a quantum-mechanical model of superconducting
transmon qubits coupled by transmission-line resonators.
The architecture of the publicly accessible quantum com-
puter by IBM is of this type [5]. Great care has been
taken to make no approximations to the Hamiltonian ob-
tained from the circuit quantization [20].

The tested quantum gates are realized by applying

Gaussian microwave pulses to the system, with pulse pa-
rameters determined by an optimization routine. Hence,
we are confident that they represent idealized versions of
the pulses used in recent experiments for this architec-
ture. This is confirmed by almost perfect results for the
entanglement experiment [6]. Thus, our simulation can
be seen as an ideal version of the experiment. Still, the
fact that all of our apparently ideal gates show diamond
error rates above 2%, suggests that the goal of building a
universal, fault-tolerant quantum computer still remains
a difficult, ongoing challenge.

We have found that gate metrics such as the average
gate fidelity [9], the diamond distance [10, 33], and the
unitarity [11] each provide insights into the errors of the
implemented gate pulses. Specifically, while the time evo-
lution of the total system is inherently unitary and the er-
rors are systematic, they appear as incoherent non-Pauli
errors on the computational subspace. Conceptually,
these errors originate from entanglement between the
computational states and the non-computational states
in the transmons and the resonator. Such errors cause
most of the mismatch between the ideal gates and the
implemented pulses (see also [7, 11, 33, 47–49]).

However, the information obtained from the gate met-
rics is not enough to assess the error induced by repeat-
edly using the gate in quantum algorithms. To be precise,
a gate showing close-to-ideal performance with respect to
the studied gate metrics can still perform worse than an
initially less ideal gate after multiple applications. In
particular, the entangling two-qubit gates were found
to lose performance over repeated applications. Espe-
cially the two-pulse echoed CR2 gate exhibited system-
atic errors that could also be observed in the IBMQX.
In comparison, the longer CR4 gate seemed to perform
better in spite of worse fidelity, as also seen in recent
experiments [28, 29]. When used in a QFT algorithm,
however, this observation was reversed again. An ex-
treme case was given by the one-pulse CNOT gate CR1,
which for CNOT21 gave the best fidelity but the worst
performance. In contrast, CNOT12 showed the worst
fidelity and the worst unitarity but a reasonably good
performance, without suffering from the systematic error
present in CR2 and CR4. Hence, the gate metrics un-
der investigation do not provide reliable information of
how well and how often a certain gate may be used in
an algorithm (see also the conclusion in [50]). As this
information is essential for potential users of gate-based
quantum computers, it should be included in the specifi-
cation sheet of the physical device.

Future work will go into scaling up the simulation to
model experiments with more qubits and additional cou-
pling schemes, in accordance with the goal pursued in
experiments. This then enables a detailed simulation of
quantum error-correcting codes under realistic conditions
for various architectures. In addition to that, we plan to
simulate the measurement process in detail.
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Appendix A: Description of the algorithm

The algorithm that we employ to solve the TDSE given
by Eq. (4) is a Suzuki-Trotter product-formula algorithm
constructed from the Hamiltonian by using the general
framework presented in [8]. The algorithm is explicit,
inherently unitary, and unconditionally stable by con-
struction. Among others, the framework has been used
to devise algorithms for NMR systems for quantum com-
putation [51], and it also forms the basis of the massively
parallel quantum computer simulator [52] that can nowa-
days simulate systems with up to 45 qubits [53].

The model Hamiltonian H given by Eq. (1) needs to be
expressed in an appropriate basis to derive the algorithm.
In this work, we choose the charge basis {|n1n2〉 : ni ∈ Z}
(i.e. the joint eigenbasis of the number operators n̂1 and
n̂2) for the qubits and the Fock basis {|k〉 : k ∈ N0} for
the resonator. This basis has the nice property that H
can be generically expressed as a sum of tensor products
of tridiagonal matrices.

At the heart of the algorithm lies a decomposition of
the total unitary time-evolution operator

Utotal(t
′, t) = T exp

(
−i
∫ t′

t

dτH(τ)

)
, (A1)

where T is the time-ordering symbol. This expression
is first discretized in time steps τ , i.e., we consider the
propagator Ut+τ,t = exp(−iτH(t + τ/2)). Note that τ
needs to be chosen small enough with respect to the en-
ergy scales and the other relevant time scales of H(t)
such that the exact mathematical solution of the TDSE
is obtained up to some fixed numerical precision. Sub-
sequently, the exponential of H(t + τ/2) is decomposed
using the Lie-Trotter-Suzuki product-formula [54]. This
is done by partitioning the tridiagonal matrices into even
and odd sums of 2 × 2 block-diagonal matrices such
that each matrix exponential can be evaluated analyt-
ically (cf. [8, 51]). With these, we iteratively update
the state vector |Ψ(t)〉 =

∑
akn1n2

(t) |k〉|n1〉|n2〉 us-
ing the second-order expression of the framework. Fi-
nally, the solution is transformed to the transmon ba-
sis {|m1m2〉 : mi ∈ N0} (see Eq. (5)) by computing
akm1m2

(t) =
∑
n1n2

(B1
n1m1

)∗(B2
n2m2

)∗akn1n2
(t), where

the Binimi are defined by |mi〉 =
∑
ni
Binimi |ni〉 and ob-

tained from the eigenvectors of HCPB given by Eq. (2)
for ngi(t) = 0.

In practice, we set the time step to solve the TDSE
to τ = 0.1 ps and the number of states included in the
product basis to ni = −8, . . . , 8 and k = 0, . . . , 3. We

stress that no further approximation needs to be made
to obtain the solution of the TDSE.

The software is written in C++ and the implemen-
tation of the algorithms has been validated by compari-
son with exact diagonalization for smaller Hilbert spaces.
Furthermore, we have checked that the results are quali-
tatively independent of small variations in the time step
τ , the number of charge and photon states included in
the basis, and the particular device parameters given in
Table I.

Appendix B: Details about the gate pulses

The quantum gate set that we physically implement
reads

S = {X1
π/2, X

2
π/2, X

1
π, X

2
π,CNOT12,CNOT21}, (B1)

where Xj
ϕ = exp(−iϕσxj /2) is a rotation of qubit j about

the x-axis by an angle of ϕ, and CNOTij is defined by
negating the target qubit j if the control qubit i is in the
state |1〉 and doing nothing if it is in the state |0〉. We
additionally support the VZ gates Zjϕ = exp(−iϕσzj /2)
for arbitrary angles ϕ to make the gate set S universal
for quantum computation [16]. By analogy with experi-
ments, a VZ gate does not correspond to a separate pulse,
but it changes the phases of all the following pulses (see
[23]). For this purpose, we keep track of two offset phases
φ1 and φ2 during the evolution, and the phase γ in Eq. (6)
of every subsequent pulse oscillating at ω̄1 (ω̄2) is shifted
by −φ1 (−φ2).

We also employ these zero-duration VZ gates to cor-
rect phase errors in the gate sequence resulting from
phase shifts due to other non-computational levels or
off-resonant driving [23]. In particular, this means that
each gate is followed by a local Z rotation of the form
Zϕ1
⊗ Zϕ2

which essentially only results in an update of
the tracked phases. The phases ϕ1 and ϕ2 are found by
an additional optimization step using the objective func-
tion given by Eq. (9), but this time replacing the result
M of the first optimization by (Zϕ1

⊗Zϕ2
)M . While this

does not change a single gate before the measurement,
and the optimized correction phases ϕ1 and ϕ2 are close
to 0, we have observed that it considerably improves the
performance of the gates after repeated applications be-
cause it mitigates the accumulation of phase errors.

1. Single-qubit gates

The general pulse for a single qubit gate is given
by Eq. (8) and depends on the parameters (Ω0, β, γ).
The amplitude Ω0 is directly proportional to the im-
plemented angle of rotation ϑ ∈ {π/2, π} and can be

obtained from the relation ϑ = bi
∫ T
0

ΩG(t) dt where

bi = 2ECi(EJi/8ECi)
1/4 [22]. The DRAG coefficient β
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TABLE IV. Parameters defining the single-qubit pulses as ob-
tained by the pulse optimization with the initial values taken
from the theory of transmon qubit control [22].

Pulse Ω0 β in ns ϕ1 ϕ2

GD1
π/2 0.00222 0.231 −0.00202 0.00328

GD2
π/2 0.00227 0.289 −0.00013 −0.00159

GD1
π 0.00444 0.219 −0.00354 0.00283

GD2
π 0.00454 0.224 −0.00026 −0.00339

TABLE V. Parameters defining the two-qubit pulses, result-
ing from the pulse optimization procedure. The parameters
ϕCR, ΩCancel, and ϕCancel are only needed for the CR1 scheme.

Pulse TCR in ns ΩCR ϕCR ΩCancel ϕCancel ϕ1 ϕ2

GF1
CR1 41.86 0.079 0.54 0.0062 0.00 −2.10 0.04

GF2
CR1 128.19 0.094 −2.89 −0.0016 1.72 3.25 1.40

GF1
CR2 102.97 0.011 − − − 0.00 0.00

GF2
CR2 71.56 0.071 − − − 0.00 0.00

GF1
CR4 50.24 0.010 − − − 0.00 −0.01

GF2
CR4 30.16 0.069 − − − −0.01 0.00

is initially set to −1/2αi (see [26]), where the anhar-
monicity αi is given in Table I. These two parameters
are refined in the optimization procedure as described in
Section II B.

In the following, we denote the resulting single-qubit
pulses on qubit i by GDi

π/2(γ) and GDi
π(γ). The

corresponding pulse parameters along with the above-
mentioned VZ phase corrections ϕ1 and ϕ2 are given in
Table IV. The only parameter left in these pulses is the
phase γ. This phase is used to implement VZ gates ac-
cording to the scheme [23]

GDi
ϑ(γ)Zϕ |ψ〉 = Zϕ GDi

ϑ(γ − ϕ) |ψ〉 . (B2)

2. Two-qubit gates

The central pulse in two-qubit gates for the present
architecture is the cross-resonance (CR) pulse, depicted
as a flat-topped Gaussian in Fig. 1. It always oscillates
at the frequency of the target qubit ω̄T and it is defined
by its amplitude ΩCR and the time TCR of the flat top
(thus the time of the CR drive including rise and fall is
TCR + 30 ns). The CR1 scheme additionally includes the
amplitude of the target drive ΩCancel and two phases ϕCR

and ϕCancel, inspired by the observations in [13].
Although there are theoretical predictions based on

perturbation theory for the specific choice of parameters
[13, 22], they need to be fine-tuned to the specific set
of qubits. We do this by scanning the amplitudes for
a CR drive and obtaining the CR interaction strengths
from the conditional rotation of the target qubit, as done
in [13]. Such a scan is shown in Fig. 5. As the ini-
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FIG. 5. (Color online) Scan of the CR drive amplitudes ΩCR

on the control qubit and ΩCancel on the target qubit. The
dimensionless amplitudes can be converted to the strength of
the drive by multiplying them with bi = 2ECi(EJi/8ECi)

1/4

(shown on top of the plots). The IX and ZX interaction
strengths are inferred by measuring the oscillations of the
target qubit conditional on the control qubit being in state
|0〉 and state |1〉 [13]. The linear theory predictions can be de-
rived perturbatively [22] and are only valid for weak drivings.
Note that the additional drive on the target qubit (the two
figures on the right, shown for ΩCR = 0.1 fixed) linearly dis-
places IX only. Thus, it can either be tuned to single out ZX
or to generate the CNOT gate directly up to local Z rotations.

tial goal of CR gates was to single out a ZX interac-
tion [19], the CR2 and CR4 gates use an echo scheme
to echo out the IX interaction. The one-pulse gate CR1,
in contrast, uses the additional drive on the target qubit
to shift IX such that the implemented transformation is
exp(−iπ(3σxT +σzCσ

x
T )/4), which is equal to a CNOT gate

up to local Z rotations. The correct time TCR for each
pulse is obtained from a separate scan.

The final pulse parameters are then found in the pulse
optimization procedure (see Section II B). By analogy
with the single-qubit pulses, we denote the flat-topped
CR drivings on qubit i by GFiCR∗(γ). The correspond-
ing parameters and the VZ phase corrections are given
in Table V. Again, γ is the only variable parameter, and
it can be used to implement VZ gates in the same way
as in Eq. (B2). Note that, as the CNOT gate commutes
with Z gates on the control qubit, only phase shifts of
the target qubit affect γ [23]. The full specifications in-
cluding the scheme to implement VZ gates are given in
Fig. 6.
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FIG. 6. Specifications of the pulse sequences in Fig. 1 to implement a generic CNOT gate with VZ phases. The elementary
Gaussian pulse GD is defined in Table IV, and GF is defined in Table V. C (T) is the control (target) qubit. (a) Generic
CNOT gate with the preceding VZ phases that all pulses need to be capable of shifting through; (b) one-pulse CR1 gate which
includes a flat-topped Gaussian pulse on the control and the target qubit simultaneously; (c) two-pulse echoed CR2 gate; (d)
four-pulse echoed CR4 gate. In the CR2 and the CR4 scheme, the additional phase shift ξ is 0 if ω̄C > ω̄T and π otherwise to
handle the case when ZX is negative (see Fig. 5).

|m1〉 H T † T † S • •

|m2〉 • • T H •

FIG. 7. Circuit for the two-qubit QFT.

|0〉 X H • H U1(ϑ1) H

|0〉 X H U1(ϑ2) H

FIG. 8. Circuit for experiments on the singlet state.

Appendix C: Circuits for the quantum programs

In the following, we show the quantum circuits for the
QFT algorithm and the entanglement experiments from
Section IV. The gates contained in the circuits map to the
pulses defined in Appendix B in the same way as for the
IBMQX [25]. In particular, we have H = Zπ/2Xπ/2Zπ/2,

S = Zπ/2, T = Zπ/4, T † = Z−π/4, and U1(ϑ) = Zϑ (up
to global phases).

The two-qubit QFT in principle contains two
Hadamard gates H, one controlled-S gate, and one
SWAP gate [16]. Rewriting this in terms of the gates
supported by our system leads to the circuit given in
Fig. 7. As only the H gate and the CNOT gate result in
actual hardware pulses, this circuit involves two X pulses
and five CNOT pulses in total.

The circuit to analyze the singlet state as a function
of the angles ϑ1 and ϑ2 is taken directly from [6] and is
given in Fig. 8.
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