001     840425
005     20210129231830.0
024 7 _ |2 doi
|a 10.1016/j.apm.2017.08.011
024 7 _ |2 ISSN
|a 0307-904X
024 7 _ |2 ISSN
|a 1872-8480
024 7 _ |2 Handle
|a 2128/16119
024 7 _ |a WOS:000415780400041
|2 WOS
024 7 _ |a altmetric:26428868
|2 altmetric
037 _ _ |a FZJ-2017-07942
041 _ _ |a English
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Meunier, Félicien
|b 0
|e Corresponding author
245 _ _ |a A hybrid analytical-numerical method for solving water flow equations in root hydraulic architectures
260 _ _ |a Gauting
|b Schwappach63682
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512463024_31844
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a In this manuscript, we propose a new method to calculate water flow and xylem water potential distribution in hydraulic architectures (such as root systems) of any complexity. It is based on the extension of the water flow equation analytical resolution of Landsberg and Fowkes for single roots. It consists in splitting the root systems in zones of homogeneous or homogeneously changing properties and deriving the xylem potential and water flow under any given boundary conditions (plant transpiration or collar potential, and potential at soil-root interfaces) without assuming a uniform xylem potential within each zone. The method combines analytical solutions of water flow within the segmented zones with the numerical solution of flow connectivity for the whole root system.We demonstrate that the proposed solution is the asymptote of the exclusively numerical solution for infinitesimal root segment lengths (and infinite segment number). As water uptake locations and magnitudes predicted by the latter solution for finite segmentation lengths deviate from the exact solution, and are computationally more intensive, we conclude that the new methodology should always be privileged for future applications.The proposed solution can be easily coupled to soil modules (as already done with existing solutions) and further implemented in functional-structural plant models to predict water flow in the soil-plant atmosphere continuum with a better accuracy than current models. Finally the new solution may be used to calculate more accurately plant scale macroscopic parameters for crop models.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Draye, Xavier
|b 1
700 1 _ |0 P:(DE-Juel1)129548
|a Vanderborght, Jan
|b 2
700 1 _ |0 P:(DE-Juel1)129477
|a Javaux, Mathieu
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Couvreur, Valentin
|b 4
773 _ _ |0 PERI:(DE-600)2004151-2
|a 10.1016/j.apm.2017.08.011
|g Vol. 52, p. 648 - 663
|p 648 - 663
|t Applied mathematical modelling
|v 52
|x 0307-904X
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/840425/files/1-s2.0-S0307904X17305206-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840425/files/1-s2.0-S0307904X17305206-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840425/files/1-s2.0-S0307904X17305206-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840425/files/1-s2.0-S0307904X17305206-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840425/files/1-s2.0-S0307904X17305206-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/840425/files/1-s2.0-S0307904X17305206-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:840425
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129548
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129477
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b APPL MATH MODEL : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21