000840426 001__ 840426
000840426 005__ 20210129231830.0
000840426 0247_ $$2doi$$a10.1002/joc.5119
000840426 0247_ $$2ISSN$$a0196-1748
000840426 0247_ $$2ISSN$$a0899-8418
000840426 0247_ $$2ISSN$$a1097-0088
000840426 0247_ $$2WOS$$aWOS:000414322800001
000840426 0247_ $$2altmetric$$aaltmetric:20399452
000840426 037__ $$aFZJ-2017-07943
000840426 082__ $$a550
000840426 1001_ $$0P:(DE-Juel1)169959$$aHan, Cunbo$$b0$$eCorresponding author
000840426 245__ $$aTrends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012
000840426 260__ $$aChichester [u.a.]$$bWiley$$c2017
000840426 3367_ $$2DRIVER$$aarticle
000840426 3367_ $$2DataCite$$aOutput Types/Journal article
000840426 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512373511_12593
000840426 3367_ $$2BibTeX$$aARTICLE
000840426 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840426 3367_ $$00$$2EndNote$$aJournal Article
000840426 520__ $$aA parameterization approach of effective roughness length was introduced into the Surface Energy Balance System (SEBS) model to account for subgrid-scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau (TP) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP, and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP. In the Yarlung Zangbo River (YZR) Basin, the sensible heat flux increased because of a rise in the ground-air temperature difference. The latent heat flux increased over the majority TP, except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening.
000840426 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000840426 588__ $$aDataset connected to CrossRef
000840426 7001_ $$0P:(DE-HGF)0$$aMa, Yaoming$$b1
000840426 7001_ $$00000-0003-3892-5298$$aChen, Xuelong$$b2
000840426 7001_ $$0P:(DE-HGF)0$$aSu, Zhongbo$$b3
000840426 773__ $$0PERI:(DE-600)1491204-1$$a10.1002/joc.5119$$gVol. 37, no. 14, p. 4757 - 4767$$n14$$p4757 - 4767$$tInternational journal of climatology$$v37$$x0899-8418$$y2017
000840426 909CO $$ooai:juser.fz-juelich.de:840426$$pVDB:Earth_Environment$$pVDB
000840426 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169959$$aForschungszentrum Jülich$$b0$$kFZJ
000840426 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000840426 9141_ $$y2017
000840426 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840426 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CLIMATOL : 2015
000840426 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840426 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840426 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840426 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840426 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840426 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840426 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840426 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000840426 980__ $$ajournal
000840426 980__ $$aVDB
000840426 980__ $$aI:(DE-Juel1)IBG-3-20101118
000840426 980__ $$aUNRESTRICTED