001     840426
005     20210129231830.0
024 7 _ |a 10.1002/joc.5119
|2 doi
024 7 _ |a 0196-1748
|2 ISSN
024 7 _ |a 0899-8418
|2 ISSN
024 7 _ |a 1097-0088
|2 ISSN
024 7 _ |a WOS:000414322800001
|2 WOS
024 7 _ |a altmetric:20399452
|2 altmetric
037 _ _ |a FZJ-2017-07943
082 _ _ |a 550
100 1 _ |a Han, Cunbo
|0 P:(DE-Juel1)169959
|b 0
|e Corresponding author
245 _ _ |a Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012
260 _ _ |a Chichester [u.a.]
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512373511_12593
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A parameterization approach of effective roughness length was introduced into the Surface Energy Balance System (SEBS) model to account for subgrid-scale topographical influences. Regional distribution of land surface heat flux values (including net radiation flux, ground heat flux, sensible heat flux, and latent heat flux) was estimated on the Tibetan Plateau (TP) based on the SEBS model, and utilizing remote sensing products and reanalysis datasets. We then investigated annual trends in these fluxes for the period 2001–2012. It was found that land surface net radiation flux increased slightly, especially in high, mountainous regions and the central TP, and was influenced by glacial retreat and topsoil wetting, respectively. Sensible heat flux decreased overall, especially in the central and northern TP. In the Yarlung Zangbo River (YZR) Basin, the sensible heat flux increased because of a rise in the ground-air temperature difference. The latent heat flux increased over the majority TP, except for areas in the YZR Basin. This can be attributed to increases in precipitation and vegetation greening.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ma, Yaoming
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chen, Xuelong
|0 0000-0003-3892-5298
|b 2
700 1 _ |a Su, Zhongbo
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1002/joc.5119
|g Vol. 37, no. 14, p. 4757 - 4767
|0 PERI:(DE-600)1491204-1
|n 14
|p 4757 - 4767
|t International journal of climatology
|v 37
|y 2017
|x 0899-8418
909 C O |o oai:juser.fz-juelich.de:840426
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169959
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CLIMATOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21