000840427 001__ 840427 000840427 005__ 20210129231830.0 000840427 0247_ $$2doi$$a10.1007/s00285-017-1111-z 000840427 0247_ $$2ISSN$$a0303-6812 000840427 0247_ $$2ISSN$$a1432-1416 000840427 0247_ $$2Handle$$a2128/16065 000840427 0247_ $$2WOS$$aWOS:000409891600004 000840427 0247_ $$2altmetric$$aaltmetric:25140117 000840427 0247_ $$2pmid$$apmid:28255663 000840427 037__ $$aFZJ-2017-07944 000840427 082__ $$a570 000840427 1001_ $$0P:(DE-HGF)0$$aMeunier, F.$$b0$$eCorresponding author 000840427 245__ $$aTowards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits 000840427 260__ $$aBerlin$$bSpringer$$c2017 000840427 3367_ $$2DRIVER$$aarticle 000840427 3367_ $$2DataCite$$aOutput Types/Journal article 000840427 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512373924_12592 000840427 3367_ $$2BibTeX$$aARTICLE 000840427 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000840427 3367_ $$00$$2EndNote$$aJournal Article 000840427 520__ $$aPredicting root water uptake and plant transpiration is crucial for managing plant irrigation and developing drought-tolerant root system ideotypes (i.e. ideal root systems). Today, three-dimensional structural functional models exist, which allows solving the water flow equation in the soil and in the root systems under transient conditions and in heterogeneous soils. Yet, these models rely on the full representation of the three-dimensional distribution of the root hydraulic properties, which is not always easy to access. Recently, new models able to represent this complex system without the full knowledge of the plant 3D hydraulic architecture and with a limited number of parameters have been developed. However, the estimation of the macroscopic parameters a priori still requires a numerical model and the knowledge of the full three-dimensional hydraulic architecture. The objective of this study is to provide analytical mathematical models to estimate the values of these parameters as a function of local plant general features, like the distance between laterals, the number of primaries or the ratio of radial to axial root conductances. Such functions would allow one to characterize the behaviour of a root system (as characterized by its macroscopic parameters) directly from averaged plant root traits, thereby opening new possibilities for developing quantitative ideotypes, by linking plant scale parameters to mean functional or structural properties. With its simple form, the proposed model offers the chance to perform sensitivity and optimization analyses as presented in this study. 000840427 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000840427 588__ $$aDataset connected to CrossRef 000840427 7001_ $$0P:(DE-HGF)0$$aCouvreur, V.$$b1 000840427 7001_ $$0P:(DE-HGF)0$$aDraye, X.$$b2 000840427 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b3 000840427 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b4 000840427 773__ $$0PERI:(DE-600)1421292-4$$a10.1007/s00285-017-1111-z$$gVol. 75, no. 5, p. 1133 - 1170$$n5$$p1133 - 1170$$tJournal of mathematical biology$$v75$$x1432-1416$$y2017 000840427 8564_ $$uhttps://juser.fz-juelich.de/record/840427/files/10.1007_s00285-017-1111-z.pdf$$yOpenAccess 000840427 8564_ $$uhttps://juser.fz-juelich.de/record/840427/files/10.1007_s00285-017-1111-z.gif?subformat=icon$$xicon$$yOpenAccess 000840427 8564_ $$uhttps://juser.fz-juelich.de/record/840427/files/10.1007_s00285-017-1111-z.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000840427 8564_ $$uhttps://juser.fz-juelich.de/record/840427/files/10.1007_s00285-017-1111-z.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000840427 8564_ $$uhttps://juser.fz-juelich.de/record/840427/files/10.1007_s00285-017-1111-z.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000840427 8564_ $$uhttps://juser.fz-juelich.de/record/840427/files/10.1007_s00285-017-1111-z.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000840427 909CO $$ooai:juser.fz-juelich.de:840427$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000840427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ 000840427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b4$$kFZJ 000840427 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000840427 9141_ $$y2017 000840427 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000840427 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000840427 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000840427 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000840427 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATH BIOL : 2015 000840427 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000840427 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000840427 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000840427 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000840427 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000840427 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000840427 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000840427 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000840427 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000840427 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000840427 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000840427 980__ $$ajournal 000840427 980__ $$aVDB 000840427 980__ $$aUNRESTRICTED 000840427 980__ $$aI:(DE-Juel1)IBG-3-20101118 000840427 9801_ $$aFullTexts