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Abstract Predicting root water uptake and plant transpiration is crucial for managing
plant irrigation and developing drought-tolerant root system ideotypes (i.e. ideal root
systems). Today, three-dimensional structural functional models exist, which allows
solving the water flow equation in the soil and in the root systems under transient
conditions and in heterogeneous soils. Yet, these models rely on the full represen-
tation of the three-dimensional distribution of the root hydraulic properties, which
is not always easy to access. Recently, new models able to represent this complex
system without the full knowledge of the plant 3D hydraulic architecture and with a
limited number of parameters have been developed. However, the estimation of the
macroscopic parameters a priori still requires a numerical model and the knowledge
of the full three-dimensional hydraulic architecture. The objective of this study is to
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provide analytical mathematical models to estimate the values of these parameters
as a function of local plant general features, like the distance between laterals, the
number of primaries or the ratio of radial to axial root conductances. Such functions
would allow one to characterize the behaviour of a root system (as characterized by its
macroscopic parameters) directly from averaged plant root traits, thereby opening new
possibilities for developing quantitative ideotypes, by linking plant scale parameters
to mean functional or structural properties. With its simple form, the proposed model
offers the chance to perform sensitivity and optimization analyses as presented in this
study.

Keywords Root water uptake · Plant-scale parameters · Hydraulic architecture ·
Water flow equation in root

Mathematics Subject Classification 92C80 · 92B05
Abbreviations

RWU Root water uptake
RS Root system
HA Hydraulic architecture
SUF Standard uptake fraction
SUD Standard uptake density

1 Introduction

Plant transpiration is the process by which water molecules are evaporated from leaf
surfaces. When stomatas open, carbon dioxide is taken up while water vapour is lost
at a certain rate function of the atmospheric evaporative demand, leaf properties and
stomatal aperture (Lobet et al. 2014).

Root systems (RS) play a key role by providing water from the soil, which sustains
the transpiration flux (McElrone et al. 2013) and by sending hydraulic and hormonal
signals to regulate stomata conductance (Tardieu et al. 2015). Location of roots within
the soil, connection between root segments but also root and soil hydraulic resistance
distribution determine the ability of a root system to acquire and transport water.
Thus, not only the RS architecture (de Dorlodot et al. 2007) but also the RS hydraulics
(Vadez 2014) influence the ability of plants to extract and transport soil water to the
leaves. It has been shown that RS architecture and hydraulics are determinant under
drought (Leitner et al. 2014b; Tardieu 2012). Therefore, researchers have attempted to
search for ideal structural and functional characteristics of root systems, which would
help plant RS to explore soil and to provide water to the plant in an optimal way
(Wasson et al. 2012; Lynch 2013). High plant conductivity, steep secondary roots,
long roots, high radial conductivity, low xylem have for instance been proposed as
potential optimal features (Comas et al. 2013). However, these features may not be
optimal under all climatic and environmental conditions (Tardieu 2012; Leitner et al.
2014b). In addition, quantitative approaches are missing to properly evaluate how
these proposed features would affect the plant ability to extract water.
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Since the first studies of Dixon and Joly (1895) more than a century ago, the
understanding of the sap ascent in plant has evolved until the establishment of the
cohesion-tension theory (Steudle 2001; Wheeler and Stroock 2008). The water trans-
port in xylem vessels is a mainly passive process opposed to the potential hydraulic
gradient between the soil and the atmosphere and the continuity of the water phase
is ensured (as long as cavitation does not appear) by tension-cohesion forces. An old
and widely accepted model for plant water flow uses the Ohm law analogy, where the
plant system is represented as a network of connected hydraulic resistances (van den
Honert 1948). The Hydraulic architecture (HA) has been proposed by Zimmermann
(1978) as a conceptual framework to represent roots as a connected network, whose
structure (connection between root segments) and function (radial and axial hydraulic
resistances) define its properties. Although this concept was initially meant to describe
above ground parts of the plant and in particular the sensitivity of xylem to embolism
(Tyree and Ewers 1991) later the notion was more specifically developed for RS (Root
hydraulic architecture or RHA) by Doussan et al. (1998a) and by Couvreur et al.
(2012), amongst others (see for example the work of Cowan 1965).

Several mathematical solutions of the flow equation in a complex connected system
have been developed through years. Landsberg and Fowkes (1978) developed the first
analytical solution for water flow in a homogeneous single root. They also proposed a
solution when regularly spaced laterals are included on a hydraulically-homogeneous
root branch. However, the solution does not apply to the case of hydraulic properties
varying along the root and an exact solution of the second case can be found without
incorporating the laterals on the primary branch. Biondini (2008) and Roose and
Schnepf (2008) also developed analytical solutions for continuous root (i.e. without
segmenting the roots into small homogeneous root parts called segments) including
second order roots (and higher) but they did not consider the resistance to flow along
the main axis between the laterals and/or they did not include possible changes of
hydraulic properties along a root branch.

Recently, Couvreur et al. (2012) developed a RS-scale model for solving water
flow in RHA. In this approach, RHA is characterized with only three macroscopic
(i.e. plant-scale) parameters: (1) the global hydraulic conductance of the root system
(Krs [L3T−1P−1]), (2) the StandardUptakeFractions (SUF[−]), or relative distribution
ofwater uptake under uniform soilwater potential, and (3) the compensatory rootwater
uptake conductance (Kcomp [L3T−1P−1]). The parameter Krs defines how easily water
flows through a root system. The larger the conductance, the lower the pressure drop
inside the root system. The SUF provides weighing factors to obtain the equivalent soil
water potential sensed by the plant (called Hs,eq [P]) by averaging the distributed soil
water potentials. The third plant-scale parameter Kcomp controls the redistribution of
root water uptake (RWU) in non-uniform soil water potential conditions (i.e. process
known as compensation, or compensatoryRWU, see Jarvis 2011 or Javaux et al. 2013).
The advantage of this approach is that it does not rely on an explicit consideration of
the RS architecture and reduces the RHA characteristric parameters to three, while
keeping an exact representation of the water flow physical principles (Couvreur et al.
2012). Moreover, these macroscopic root system hydraulic parameters can be used in
coupled soil–plant models (such as models of de Jong van Lier et al. 2013 or Javaux
et al. 2008) to simulate the water uptake for contrasted soil and climate conditions.
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Leitner et al. (2014b) indeed showed that optimal root traits depend on soil and climate
properties.

In a context of global climate change and expected water limitations on crop yield
(Cattivelli et al. 2008), identifying key factors affecting crop water productivity is
essential (Volpe et al. 2013; Passioura 2006). Root systems, with their large natural
variability seem to be good candidates for crop plant improvement. Developing plant-
scale indices, which quantify the ability of a RS to extract water from heterogeneous
soil is a key step in the search of optimal plants under dry conditions. However, no
quantitativemodel exists yet to link theRShydraulic parameters to local root functional
and structural properties (i.e. root angle, distance between laterals, local hydraulic
resistances, etc.). Our objective is thus to provide novel mathematical models linking
local root structural and functional traits to plant-scale properties of RS: Krs, SUF and
Kcomp. In this study, we will focus on the first two parameters after demonstrating that
Kcomp is equal to Krs under certain conditions.

To achieve this goal, the following methodology will be followed: (1) to review,
adapt existing or develop new mathematical solutions of the flow equations explicitly
accounting for specific local root traits in simple RS with increasing degrees of com-
plexity; (2) to extract the upscaled hydraulic parameters from these solutions in order
to (3) investigate how root traits impact them.

The structure of the paper is the following: first we develop the theory of our model
with mathematical tools applied to RS with increasing complexity. We then illustrate
the model functioning with two applications: the first one uses the model to derive root
hydraulic parameters fromexperimental data; the second is theoretical and analyses the
sensitivity of the macroscopic parameters of a mature maize RS to local traits. Finally,
we demonstrate and discuss the application of the model in quantitative phenotyping.

2 Theory

2.1 Root water flow model

2.1.1 Water flow equation

Two local hydraulic properties characterize any root or root zone: its hydraulic radial
conductivity kr

[
LT−1P−1

]
and its axial intrinsic conductance kx

[
L4T−1P−1

]
. Here

and everywhereweassumeauniquevalue for root radial conductivity in both directions
(in- and outflows).

Mass conservation for a segment of length dz [L] writes

d Jx
dz

= 2πrqr (1)

where Jx [L3T−1] is the volumetric flow rate, r [L] is the root radius and qr [LT−1]
the radial flux. We call Jr [L3T−1] the radial volumetric flow given by:

Jr = 2π rqrdz (2)
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The axial volumetric flow rate is powered by the gradient of water xylem potential
Hx [P] (defined as the sum of the gravitational and the pressure potentials):

Jx = −kx
dHx

dz
(3)

The water radial flux comes from the water potential difference between the root
xylem potential and the soil–root interface Hsr [P]:

qr = kr (Hsr − Hx ) (4)

Combining Eqs. (1), (3) and (4) we obtain the water flow equation in roots:

d

dz

(
−kx

dHx

dz

)
= 2πrkr (Hsr − Hx )

This equation can be solved given that two boundary conditions are provided and
the root hydraulic properties are known. The solution takes the form of a continuous
function of the xylem potential which leads to the axial and radial root water flows.
The flow can then be used to derive the root macroscopic parameters described in the
next section.

2.1.2 Macroscopic parameters

Couvreur et al. (2012)model provides a solution based on three parameters to represent
water flow in any complex RS. These three parameters are the root system conductance
or Krs [L3P−1T−1], the Standard Uptake Fraction or SUF [−] and the compensatory
water uptake conductance or Kcomp [L3T−1P−1]. This physically-based model of the
water flow in root systems can be summarized with two main equations. The first one
is the segment water uptake which is given by the sum of two processes: the water
uptake in homogeneous soil conditions and the compensatory water uptake that occurs
in heterogeneous conditions:

Jr = Tact SU F + Kcomp
(
Hsr (z) − Hs,eq

)
SU F (5)

with Jr [L3T−1] the radial flow, Tact [L3T−1] the actual transpiration, Hsr(z) [P] the
soil–root interface potential and Hs,eq [P] the soil equivalent potential felt by the plant
defined as the soil–root interface potential weighted by the standard uptake fraction.
The second equation describes the relation between the actual transpiration and the
collar potential Hcollar [P]:

Tact = Krs
(
Hs,eq − Hcollar

)
(6)

Whatwe learn from such amodel is thatwe can simulate accurately thewater uptake
in any condition of any root system once we know the macroscopic parameters. As
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shown by the authors, these plant-scale variables can be calculated numerically. Let
us first detail what they exactly mean and how we can calculate them.

The first plant-scale macroscopic parameter is the global conductance of the RS,
Krs. It represents the ability of a root system to uptake water to sustain the transpiration
Tact [L3T−1] under a specific difference between the soil water status and the xylem
plant potential and can be calculated in homogeneous soil conditions.We fix the collar
potential and impose a uniform soil–root interface. In such a case, Hsr(z) = Hs,eq and
the conductance can be obtained calculating the actual transpiration that the root
system can deliver: Eq. (6) yields:

Krs = Tact(
Hs,eq − Hcollar

) (7)

Note that the root system conductance can also be calculated using Thevenin the-
orem (1883).

The second macroscopic root system parameter is the Standard Uptake Fraction
SUF or the normalized water uptake under uniform conditions. By definition, SUF is
the radial flow entering each root segment divided by the collar root flow under homo-
geneous soil conditions. Again it can be calculated solving the water flow problem in
uniform soil conditions, Eq. (5) yields:

SU F = Jr
Tact

In continuous domains, we can define a new parameter characterizing the distri-
bution of water uptake rate densities under uniform soil water potential distribution:
SUD [L−1]) for Standard Uptake Density. SUD is directly related to SUF through the
segment length lseg [L]:

SUD = SU F

lseg

By definition, the integration of SUD over the total root length yields 1. Mathemat-
ically, SUD is defined as:

SUD = 2πrqr
Tact

The third parameter is Kcomp, the compensatory conductance. It characterizes the
ability of a plant to compensate, i.e. taking up more water in regions where it is
more available (i.e. under heterogeneous soil conditions). It must be calculated under
heterogeneous soil conditions. If the collar flow is null, the root water uptake/release
is due to the heterogeneous soil–root potential only and controlled by Kcomp. In this
case, Eq. (5) yields (Tact = 0):

Jr = Kcomp
(
Hsr (z) − Hs,eq

)
SU F
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The definition of the equivalent soil water potential slightly changes in continuous
domains: Hs,eq = ∫ lroot

0 Hsr(z)SUD(z, lroot)dz. The equivalent potential sensed by the
plant is now obtained integrating the soil–root interface potential Hsr(z) [P] weighted
by the Standard Uptake Density. The integration domain in the case of a single root
is between 0 and the root length lroot [L] as shown here or in case of complex root
systems it is performed on the whole root system length.

2.2 Single homogeneous root

Let us consider a simple RS made of a single root branch with uniform hydraulic
properties. The RS has a radius r and a length lroot [L] and is oriented along the z-
axis (a list of the principal symbols can be found in “Appendix 1”). z is defined as
the position along the root, zero at the root tip, positive towards the plant collar by
convention. Let us assume that the water potential at the soil–root interface Hsr(z) [P]
is uniform and equal to Hsoil [P]. The xylem water potential in the root collar is called
Hcollar [P]. This situation is shown in Fig. 1 (left).

The analytical solution for water flow in a uniform root was proposed by Landserg
and Fowkes (1978) when a constant collar potential and no-flux at the tip are imposed:

Hx (z, lroot ) = Hsoil + (Hcollar − Hsoil)
cosh (τ z)

cosh (τ lroot )

Jx (z, lroot ) = kxτ (Hsoil − Hcollar )
sinh (τ z)

cosh (τ lroot )

Jr (z, lroot ) = dzkxτ
2 (Hsoil − Hcollar )

cosh (τ z)

cosh (τ lroot )

where cosh, sinh and tanh are the hyperbolic cosine, sine and tangent functions, respec-

tively. We call τ =
√

2π rkr
kx

[L−1]. This parameter is similar to α introduced by Alm
et al. (1992) and Landsberg and Fowkes (1978). See “Appendix 2” for mathematical
details (adapted from Landsberg and Fowkes 1978).

Since the equivalent potential in case of uniform soil water potential yields:

Hs,eq = Hsoil

we obtain for the root conductance Krs(lroot) using its definition (7) (Tact is the axial
flow at the root collar, i.e. in z = lroot):

Krs(lroot )
Δ= Jx (z = lroot , lroot )

Hsoil − Hcollar
= kxτ

sinh (τ lroot )

cosh (τ lroot )
= κtanh(τ lroot ) (8)

with
κ = τkx = √

2πrkr kx [L3P−1T−1] (9)

Interestingly in case of non-limiting xylem conductance and/or small roots:

τ lroot << 1 ⇐⇒ tanh(τ lroot ) � τ lroot
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Fig. 1 Continuous model for a homogeneous root: Layout of the uniform root simulated (left). The second
(center) and third (right) panels illustrate the sensitivity of the Krs macroscopic parameter decreasing the
axial intrinsic conductance and radial conductivity, respectively. For details, see text

the global conductance can be approximated by a linear relation:

Krs(lroot ) � 2πrkr lroot (10)

In this case the global conductance of the root is proportional to the total root surface:
2π rlroot. In case of very long roots and/or xylem conductance limiting conditions
(τ lroot >> 1), an asymptotic value κ is reached:

Krs(lroot ) → κ (11)

This asymptotic value of conductance implies that for given local hydraulic prop-
erties and water potential difference between the soil and the root collar, there is a
maximal flow rate. This suggests that there is an optimal length beyond which the root
conductance does not increase significantly. At that point plant marginal interest in
investing structural carbon in the root for water acquisition is not significant.

Centre and right panels of Fig. 1 illustrate the sensitivity of the global conductance
of the uniform root to changes in axial and radial conductivities. In these subplots
Eqs. (8), (10) and (11) are plotted as blue solid lines, dark/grey linear relations and
dark/grey dashed-dotted horizontal lines, respectively. The dark arrows indicate the
decreasing trend of Krs curves when decreasing root hydraulic conductivities (resp.
axial and radial conductivities in central and right subplots).

Note that for this figure and all other figures in this study we used maize root con-
ductivities values obtained by Doussan et al. (1998b) and architectural traits (radius,
internodal distances) from RootTyp (Pags et al. 2004) parametrized for maize (Cou-
vreur et al. 2012). In particular young segments have been considered for the first
figures.

Since a maximal flow rate exists for a given water potential difference between the
soil and the collar we can define the fraction α [−] of the actual flow to the maximal
one. By definition it is the root conductance divided by its asymptotic value. Inversely,
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Fig. 2 l∗(α): Root length necessary to reach two different α fractions of κ as a function of the root local
conductivities

we derive the root length l∗ needed to reach a specific ratio of the maximal flow.

α(l∗) Δ= κtanh(τ l∗)
κ

= tanh(τ l∗) ⇐⇒ l∗(α) = atanh(α)

τ

with atanh the inverse hyperbolic tangent function. This solution allows us to calculate
the length necessary to reach a specific conductance such as α = 0.5, or α = 0.99.
This length depends on the root radial and axial conductivity, as illustrated in Fig. 2.
This equation puts the bases of allometric relations for roots allowing to relate optimal
root branch length to their local properties.

The second root system parameter is the Standard Uptake Density or SUD. Using
its definition we obtain:

SUD(z, lroot )
Δ= 2πrqr (z, lroot )

Krs (Hsoil − Hcollar )
= τ

cosh (τ z)

sinh(τ lroot )
(12)

We can also approximate the Standard Uptake Density by a Taylor series
(τ lroot << 1 ⇒ τz << 1, ∀z):

SUD(z, lroot ) � 1

lroot

(

1 + (τ z)2

2

)

(13)

In this case the Taylor approximation of the the distribution of water uptake rate
densities is a parabola meaning that the maximal uptake occurs at the proximal part
of the uniform root (z = lroot).

Under non-limiting xylem conductance conditions though, the SUD is almost uni-
form along the root and equals to 1

lroot
. We obtain the latter result by neglecting the

quadratic dependence of SUD in z:

SUD(z, lroot ) � 1

lroot

(

1 + (τ z)2

2

)

� 1

lroot
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Fig. 3 Continuous model for a homogeneous root: sensitivity analysis of the SUD macroscopic parameter
according to changes in lroot and τ parameters. For details, see text

Figure 3 illustrates the uptake rate relative density in standard conditions and its
sensitivity to lroot and τ , respectively. In the left panel, the lighter blues solid line are
smaller roots. The gray dashed lines are the harmonic approximations predicted from
Eq. (13). The smaller the τ l product the better the approximation. In the right subplot
τ intrinsic property of the root is gradually increased. The smaller the radial to axial
conductivity ratio the more homogeneous the water uptake. Indeed the axial resistance
is less and less limiting so that the radial barrier becomes progressively the highest
resistance to root water flow. The area below the curve always remains equal to 1.

To derive the third macroscopic parameter (Kcomp), new boundary conditions have
to be imposed. Indeed this parameter only plays a role in non-uniform soil water
potential conditions. We impose now non-uniform soil–root interface potential, no
flux at the tip and at the collar, which write:

⎧
⎨

⎩

Hsr (z) = αexp (βz)
Jx (z = 0, lroot ) = 0
Jx (z = lroot , lroot ) = 0

In this case the solution for the xylem water potential distribution becomes:

Hx (z, lroot ) = τ 2

τ 2 − β2 αexp (βz) + c1exp (τ z) + c2exp (−τ z)

with c1 and c2 that can be obtained using previously described root boundary
conditions:

[
c1
c2

]
=

[
τ −τ

τexp(τ lroot ) −τexp(−τ lroot )

]−1
⎡

⎣
−αβτ 2

τ 2−β2

−−αβτ 2

τ 2−β2 exp(βlroot )

⎤

⎦
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Interestingly, we find:

Jr
SU F

τ lroot→0� 2πrkr lroot
(
Hsr − Hs,eq + c.O (τ lroot )

)

with c a constant depending on the root properties and soil conditions. So that Kcomp
is equal to Krs (see Eq. 10) as long as the xylem conductance is non-limiting, as shown
numerically by Couvreur et al. (2012). When xylem conductance is limiting, Kcomp
cannot be defined analytically in a simple way, but in tested maize and wheat HA
a value close to Krs predicts compensatory uptake satisfyingly well (Couvreur et al.
2014). In the following sections we only consider Krs = Kcomp for sake of simplicity
but we always can use the previous equation to evaluate this approximation’s accuracy.

To summarize this first theoretical section, from the physical equations of water
flow in a root cylinder with uniform hydraulic properties (solutions of Landsberg and
Fowkes 1978), we derived analytical expressions for the macroscopic root hydraulic
parameters of Couvreur et al. (2012) model in terms of local hydraulic properties.
These plant-scale parameters depend on both hydraulic (axial and radial conductivi-
ties) and geometrical traits (length, radius). Particularly, two local hydraulic properties
determine the macroscopic parameters: κ provides the asymptotic root conductance,
and τ determines how quickly a growing root approaches its asymptotic conductance,
and how uniform is the water uptake profile along the root. These local properties do
not depend on the boundary conditions. They are intrinsic root properties, just like the
macroscopic parameters.

2.3 Root with heterogeneous properties

We consider now a root cylinder made of several homogeneous root zones. Each zone
is characterized by its own hydraulic radial conductivity kr,i and axial conductance
kx,i with i varying from one to N the total zone number. To calculate the macroscopic
parameters of the entire root we first focus on one of the root zones called generically
hereafter i. For all zones except the apical one, the upstream root part can be seen as
an initial conductance attached to the considered zone. The root zone under focus has
a root length lroot,i and the position zi [L] along the root portion varies between 0 and
lroot,i. We define the upstream or distal end of the root zone as the position closest to
the root tip (z = 0) and the downstream or proximal end as the end of the root zone
(z = lroot,i).

We can define an asymptotic conductance κi and a convergence speed τi for each
root zone. Therefore we apply the same methodology than in the previous sections
except for the boundary conditions that are different than no flux at the lower end
of the root cylinder to solve the water flow equation. For the ith zone, the boundary
conditions write:

{
Hx (zi = lroot,i , lroot,i ) = Hx,i

Jx (zi = 0, lroot,i ) = Ji−1
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where the first variable under parentheses represents the location within the ith zone,
and the second one, the length of this zone). Hx,i [P] is the proximal pressure head and
Ji−1 [L3T−1] is the distal flow. The latter condition is used to simulate the presence of
an upstream root cylinder below the current one (distal end). Using the methodology
developed in the “Appendix 2” to solve the flow equation, we obtain after simplifica-
tion:

Hx (zi , lroot,i ) = Hsoil + (
Hx,i − Hsoil

) cosh(τi z)

cosh(τi lroot,i )
+ Ji−1

κi

sinh(τi lroot,i − τi z)

cosh(τi lroot,i )
(14)

and

Jx (zi , lroot,i ) = −kx,i
dHx

dzi
= ΔHiκi

sinh(τi zi )

cosh(τi lroot,i )
+ Ji−1

cosh(τi lroot,i − τi zi )

cosh(τi lroot,i )

with Hi = Hsoil − Hx,i [P]. It can be seen that these two equations verify the boundary
conditions.

Using themacroscopic parameters definitions given in a previous section (see 2.1.2)
we obtain for the root conductance Krs(lroot,i) defined as the conductance of the entire
root system including the distal part and the root segment with length lroot,i:

Krs,i (lroot,i )
Δ= Jx (lroot,i , lroot,i )

ΔHi
= κi tanh(τi lroot,i ) + Ji

ΔHcosh(τi lroot,i )
(15)

The conductance of the distal root zone in zi = 0 is given by:

Krs,i−1
Δ= Ji

Hsoil − Hx (zi = 0, lroot,i )

The conductance of the zone i–1 is indeed by definition the flow Ji which arrives
to segment i divided by the potential difference between the soil and the xylem at
the connection between the root cylinders, zi = 0 in this case. When Krs,i−1 with
Hx(zi, lroot,i) estimated by Eq. (14) is inserted in Eq. (15), it yields:

Krs,i (lroot,i ) = κi
[
tanh(τi lroot,i )

+ Krs,i−1

cosh(τi lroot,i )
(
Krs,i−1sinh(τi lroot,i ) + κi cosh(τi lroot,i )

)

]

(16)

Let us point that, if the zone length we are focusing on is zero, the root conductance
is simply Krs,i−1, the conductance of the upstream zone.
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Similarly a new solution is obtained for the SUD. The standard uptake density along
the considered root fraction is independent of the soil water potential:

SUD(zi , lroot,i ) = τi

[
κi cosh(τi zi ) + Krs,i−1sinh(τi zi )

κi sinh(τi lroot,i ) + Krs,i−1cosh(τi lroot,i )

]
(17)

These solutions (Eqs. 16, 17) are a generalisation of the solutions of the homoge-
neous root Eqs. (8) and (12) to roots with several differentiated zones (straightforward
with Krs,0 = 0).

To summarize, we just have presented a method that can be used to assemble the
elementary building blocks (i.e. the zones) into complex hydraulic systems. We can
now generalize for a compartmented root of total length lroot made of N differentiated
zones. The locations of the connections between zones are called li, which corresponds
to the cumulative sums of the different zone lengths lroot,i. When continuity of both
axial fluxes and potentials is imposed at the junction between distinct zones as ’inter-
mediary’ conditions and when no flux at the root tip, i.e. Jx(z = 0, lroot) = 0 and a
potential top boundary condition Hx(z = lroot, lroot) = Hcollar are imposed just as in
the first section, a unique solution can be found. Mathematically we impose from the
tip to the collar:

⎧
⎪⎪⎨

⎪⎪⎩

Jx (z = 0, lroot ) = 0
Hx (z = li , lroot )|i = Hx (z = li , lroot )|i+1 ∀i ∈ [1, N − 1]
Jx (z = li , lroot )|i = Jx (z = li , lroot )|i+1 ∀i ∈ [1, N − 1]
Hx (z = lroot , lroot ) = Hcollar

(18)

where . . . |i means that the function is evaluated in the ith zone.
The solution of the flow equation inside each root zone is given by the general

solution (19) applied to the boundary conditions (18).

Hx (z, lroot )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hsoil + c1exp (τ1z) + c2exp (−τ1z) , z ∈ [0, l1]
Hsoil + c3exp (τ2(z − l1)) + c4exp (−τ2(z − l1)) , z ∈ [l1, l2]
...

Hsoil + c2N−1exp (τN (z − lN−1)) + c2Nexp (−τN (z − lN−1)) , z ∈ [
lN−1, lN

]
(19)

where c is the vector of coefficients that can be determined by the boundary conditions
(18). For instance, if we consider two zones equations (18) become:

⎧
⎪⎪⎨

⎪⎪⎩

Jx (z = 0, lroot ) = 0
Hx (z = l1, lroot )|1 = Hx (z = l1, lroot )|2
Jx (z = l1, lroot )|1 = Jx (z = l1, lroot )|2
Hx (z = lroot , lroot ) = Hcollar
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Or
⎧
⎪⎪⎨

⎪⎪⎩

−kx1 (c1τ1 − c2τ1) = 0
c1exp(τ1l1) + c2exp(−τ1l1) = c3 + c4
−kx1τ1 (c1exp(τ1l1) − c2exp(−τ1l1)) = −kx2τ2 (c3 − c4)
Hsoil + c3exp(τ2(l2 − l1) + c4exp(−τ2(l2 − l1) = Hcollar

This set of four boundary conditions can be rewritten inmatrix notations factorizing
the coefficients ci:

R ∗ c = H

with:

c =

⎡

⎢⎢
⎣

c1
c2
c3
c4

⎤

⎥⎥
⎦

R =

⎡

⎢
⎢
⎣

τ1 −τ1 0 0
exp (τ1l1) exp (−τ1l1) −1 −1

κ1exp (τ1l1) −κ1exp (−τ1l1) −κ2 κ2
0 0 exp (τ2(l2 − l1)) exp (−τ2(l2 − l1))

⎤

⎥
⎥
⎦

H =

⎡

⎢⎢
⎣

0
0
0

Hcollar − Hsoil

⎤

⎥⎥
⎦

This mathematical development allows the splitting of any root in an arbitrary
number of differentiated homogeneous zones by calculating the vector c using:

c = R−1H

It allows solving the water flow equation in a single root branch with hetereoge-
neous properties. By inserting the values of vector c in Eq. (19), we obtain the xylem
potential everywhere inside the root branch and consequently the axial and radial
fluxes by applying Eqs. (29) and (30), respectively. The macroscopic parameters are
then obtained using their definition (8) and (12).

Figure 4(top) shows a RS made of three zones, each of them having homogeneous
hydraulic properties. In the left subplot the root global conductance is shown as a
function of the total root length (dark blue solid line). The Krs can be calculated at
each location z between the tip and lroot, and will depend on the hydraulic properties of
the root segment and zones between0 and the location z.How theKrs will changewith z
will depend on the values of the root properties along the root branch. Ifwe change each
of the radial or axial hydraulic conductivities separately, Krs will change accordingly
in a different way, as showed in Fig. 4. The sensitivity of this macroscopic parameter
to the different radial conductivities when increasing the local hydraulic traits by 25%
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Fig. 4 Root with heterogeneous properties: the top-drawn root is a layout of a three-compartmented root.
The two subplots represent the root global conductance as a function of different local properties (dark blue
solid line) and its sensitivity to the local radial (lighter blue lines, left subplot) or axial (lighter blue lines,
right subplot) conductivities

are plotted (light blue solid lines). In the right subplot we present the same sensitivity
analysis of this root conductance to each local hydraulic axial conductances. The
reference values are the different hydraulic conductivity plateau obtained by Doussan
et al. (1998b) for a maize lateral root.

The sensitivity of this macroscopic parameter to the different radial conductivities
when increasing the local hydraulic traits by 25% are also plotted (light blue solid
lines). In the right subplot we present the same sensitivity analysis of this root con-
ductance to each local hydraulic axial conductances. Increasing by 25% the radial or
axial conductivity of one of the zones affects in different ways the global conductance
according to the root length.

Figure 5 shows SUD in the case of heterogeneous root properties and its sensitivity.
Here again we consider a three-zoned root. In subplots b and c, the uptake fraction
density is plotted as a function of the position along the root (blue solid line). We
clearly see the locations of the transition between zones. By definition the integral
remains equal to unity. The sensitivity of the normalized uptake is plotted when local
radial conductivity of each zone is respectively increased by 25% as compared to the
generic hydraulic properties obtained by Doussan et al. (1998b) (light blue dashed,
dotted and dash-dotted lines, from tip to collar zones). In the right subplot the impact
of an increase of the axial conductances of each zone is shown (light blue dashed,
dotted and dash-dotted lines from tip to collar zones).

2.4 Root system with laterals

Unlike the uniform root or the root with homogeneous zones, no solution of the water
flow equation could be found for a root bearing regularly spaced laterals. Landsberg
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Fig. 5 Root with heterogeneous properties: SUD along a three-zones root (dark solid line) and sensitivity
of the normalized uptake to the local radial (left subplot) and axial (right subplot) hydraulic conductivities
(lighter blue lines)

and Fowkes (1978) suggested an approximation when incorporating these laterals all
over the principal root length by increasing the radial conductivity of the principal
root. Yet it is possible to find the conductance of this idealized root system using a
discrete approach. The mathematical solution of this problem is not straightforward
and we will introduce it progressively. In a first step, we present such a discrete model,
its parameters and equations (Sect. 2.4.1). We then apply and solve it for the simplest
case: the uniform root (Sect. 2.4.2). We show that the discrete root model converges
to the exact continuous model for sufficiently small root segments. Finally we repeat
the methodology for the more complex case of a root bearing laterals (Sect. 2.4.3).

2.4.1 Discrete model

In the discrete approach, we consider that the basic element is a 1D root segment
of length lseg [L] in which local hydraulic properties are considered as uniform.
Each single segment (numbered n) has a radial (Kr,n [L3P−1T−1]) and an axial
(Kx,n [L3P−1T−1]) hydraulic conductance that depends on the hydraulic and geo-
metric root segment properties as:

{
Kr = 2πrlsegkr
Kx = kx

lseg

The segment radial conductance is thus defined as the radial conductivity multi-
plied by the segment surface while the root segment axial conductance is obtained by
dividing the intrinsic axial conductance by the segment length. Note that we now use
the subscript n instead of i to clearly distinguish root zones (that exhibit contrasted
root hydraulic properties, see previous section) and root segments (that may have
identical root hydraulic properties, as it will be shortly developed). Using the segment
conductances, the flow in the segmented root systems is approximated for the segment
numbered n (supposed here not linked to lateral roots) by:
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Fig. 6 Conceptual models used
for the discrete model of the
homogeneous root: overview of
the simple homogeneous root
made of n segments (a) with
details on the recurrence
relationship (b) and the first
recurrence (c)

{
Jr,n = Kr,n

(
Hsr,n − Hx,n

)

Jx,n = Kx,n
(
Hx,n−1 − Hx,n

)

with Hsr,n the water potential at the soil root interface, Hx,n and Hx,n−1 the water
xylem potential inside the segment n and n–1 respectively. Jr,n and Jx,n are the radial
and axial flows in the nth segment. The potential as well as the radial and axial flow
are considered as uniform inside the root segment of finite length.

2.4.2 Discretized uniform root branch

A root branch can be conceptualized as a recurrence of the diagram represented in
Fig. 6b whose initial value is illustrated in Fig. 6c. Mathematically, the equivalent
conductance for n segments Krs,n is:

Krs,n =

⎧
⎪⎨

⎪⎩

(
1

Kr,n
+ 1

Kx,n

)−1
, n = 1

(
1

Kx,n
+ 1

Kr,n+Krs,n−1

)−1
, elsewhere

The derivation of the discrete problem from continuous approach is given in the
“Appendix 3”.
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Note that in the specific case of homogeneous root: Kr,n = Kr,∀n (and the same
for all Kx,n. It can be demonstrated that the root conductance for n segments is given
by:

Krs,n =

[(
κ+
κ−

)2]n − 1

1
κ−

[(
κ+
κ−

)2]n − 1
κ+

n→∞
−−−−−→ κ+

Kx>>Kr−−−−−→ √
Kr Kx = √

2πrkr kx (20)

where κ− [L3P−1T−1] and κ+ [L3P−1T−1] are function of the radial and axial con-
ductances: ⎧

⎨

⎩
κ− = −Kr−

√
K 2
r +4Kr Kx
2 < 0

κ+ = −Kr+
√

K 2
r +4Kr Kx
2 > 0

(21)

Demonstration is given in “Appendix 4”. κ+ is the asymptotic value of conductance:
for a homogeneous root, Eq. (20) shows that the apparent conductance tends to κ+,
when the number of segments (or the root branch length) tends to infinity, as previously
shown in Fig. 1 and Eq. (9). For the first limit of Eq. (20) to be verified, κ+ must have
a smaller absolute value than κ−. But this is always the case since, in absolute values,
according to their definitions, the former is the difference of two positive terms and
the latter the sum of the same terms. Note that for lseg → 0, κ+ goes to the exact
asymptotic conductance given in Eq. (9) which is the second limit of Eq. (20).

If we define

χ =
(

κ+
κ−

)2

(22)

Eq. (20) simply becomes:

Krs,n = χn − 1
1

κ− χn − 1
κ+

.

χ determines the rate of convergence of the root conductance towards its asymptotic
value κ+.

It is worth mentioning that for lseg → 0, κ+ → κ and Krs,n → Krs(nlseg). This
implies that the size of the segments that lead to a certain accuracy of the discrete
solution can be derived.

A finite difference solution of SUF for a homogeneous root can be found in function
of the kr

kx
ratio (and on the considered segment length lseg). It leads to an equation

equivalent to the one found in the continuous solution section when the segment length
is small enough. Details of the mathematical development are given in “Appendix 5”.

2.4.3 Discretized root branch with laterals

For RS with lateral roots, no continuous solution of Hx and Jr was found but a recur-
rence series can still be used to obtain the macroscopic hydraulic parameters. In this
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Fig. 7 Root systemwith laterals: the left panel illustrate the conceptual root system. The two other subplots
show κ+,lat as a function of Klat , dinter with increasing kr (left) and increasing kx (right) (from light to dark
blue in both figures). The asymptotic conductance of an unbranched root system is given by the horizontal
dashed lines

series radial conductivity and axial conductance of the principal root are assumed to
be uniform as well as the conductance of lateral roots. Lateral roots can be reduced
to their effective total conductance Klat [L3T−1P−1], each connected in parallel to the
principal root. Note that the lateral conductance Klat is assumed to be constant. This
assumption makes sense because it was demonstrated in the two previous sections that
beyond a certain length the conductance of a uniform or heterogeneous root branch
does not change dramatically. We call dinter [L] the distance between two successive
laterals. The link with the number of internodal segments (Ninter) is:

dinter = Ninter lseg

Figure 7(left) shows the recurrence that must be solved to obtain the asymptotic
conductance of our system Krs,nlat after addition of nlat laterals. kr and kx are the radial
conductivity and intrinsic axial conductance of the main root, dinter and Klat are the
branching distance and the lateral root conductance, respectively. Using Eq. (16), we
obtain the following recurrent series after simplification:

Krs,nlat = κ
(
Klat cosh(τdinter ) + sinh(τdinter ) + Krs,nlat−1cosh(τdinter )

)

Klat sinh(τdinter ) + κcosh(τdinter ) + Krs,nlat−1sinh(τdinter )

where Krs,nlat is the conductance of the whole system after addition of nlat laterals.
Applying the method developed for the homogeneous single discrete root (see

“Appendix 4”), we obtain the convergence values of the recurrent series for the whole
root system: ⎧

⎪⎪⎨

⎪⎪⎩

κ+,lat =
−Klat+

√
K 2
lat+4

(
κ2+ Klat κ

tanh(τdinter )

)

2 > 0

κ−,lat =
−Klat−

√
K 2
lat+4

(
κ2+ Klat κ

tanh(τdinter )

)

2 < 0

(23)
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κ+,lat is the asymptotic conductance of the system. This is the root system conduc-
tance including the effect of laterals. Interestingly, it yields:

κ+,lat

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Klat�κ

−−−−−→ κ
tanh(τdinter )

Klat�κ

−−−−−→ κ
dinter→0
−−−−−→

√
Klat kx
dinter

dinter→∞
−−−−−→ κ

In others words, the asymptotic conductance of a RS with laterals depends on four
parameters: the radial and axial conductivities of the principal root segments, the con-
ductance of the laterals and the distance between two laterals. When this distance
becomes infinite—i.e. there is no more laterals—we come back to the conductance
we found in Sect. 2.2 (continuous solution of the single homogeneous root). Same
observation if the laterals conductance becomes negligible. Other possible simplifica-
tion: if the Klat is much larger than κ , the root system conductance is the principal root
conductance κ increased by a factor 1

tanh(τdinter)
. If the internodal distance becomes very

short the asymptotic conductance of theRSdepends only on the principal axial conduc-
tance, the distance between the successive laterals and their conductance. The fact that
a maximal conductance for a root system with laterals is progressively reached as the
principal root branch grows puts the basis of allometric relations (links functional—
structural properties) for root systems.

The RS conductance has the same shape than the discrete solution for a homoge-
neous root:

Krs,nlat = (χlat )
nlat − 1

1
κ−,lat

(χlat )
nlat − 1

κ+,lat

(24)

with:

χlat =
(

κ

κcosh(τdinter ) − κ−,lat sinh(τdinter )

)2

(25)

Let us note that in their original paper Landsberg and Fowkes found a similar
relation for the total conductance of a root bearing laterals but they considered the
following simplification: the laterals were not accounted directly for but their presence
was simulated increasing the radial conductivity of the main root everywhere. This
assumption leads to overestimate the root system conductance especially when the
density of the laterals is low or when their conductance is high. Moreover it does not
predict correctly the water uptake location (which is ’diluted’ along the root branch).

In addition this model can be coupled with the previous one (root with heteroge-
neous properties) to take into account the differentiated zones close to the root tip or
at the root basis.

From this solution we can derive how many segments are necessary to reach a
certain fraction of the maximal conductance κlat,+. We derive the fraction αlat of the
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actual system conductance to the asymptotic one and its inverse function:

αlat (nlat ) = χ
nlat
lat − 1

κ+,lat
κ−,lat

χ
nlat
lat − 1

⇐⇒ nlat (αlat ) =
log

(
αlat−1

αlat
κ+,lat
κ−,lat

−1

)

log (χlat )
(26)

Figure 7 shows the asymptotic conductance κ+,lat of the rootwith laterals, clarifying
the effect of kx, kr, Klat, and dinter. The horizontal dashed lines give the asymptotic
conductance κ for the principal root without laterals, for different ratio of radial to axial
conductances (Eq. 24), increasing the radial conductivity (left, from light to dark blue
lines) or axial conductivity (right, from light to dark blue lines). Besides it prevents
the accurate location of the root water uptake along the root since the effect of laterals
is diluted along the whole root length.

The continuous lines give the conductance of a branched root when Klat increases
and dinter is 1 cm (open triangles) or 5 cm (open circles). The larger the distance
between branches, the more the asymptotic conductance is controlled by the principal
root properties. The equivalent conductance starts to be affected by the conductance
of the lateral roots after a certain Klat value that varies with kr. When Klat tends to
zero, the solution becomes equivalent to a single unbranched root system and reaches
the dashed lines asymptotically.

Let us note that if the internodal distance between successive laterals becomes very
short, the root conductance, as suggested by Landsberg and Fowkes (1978), is given
by:

Krs = κnewtanh(τnewlroot )

with the same notation as before and:

kr,new = kr + Klat

2πrdinter
kx,new = kx

3 Applications

In this section, we present possible applications of these models. We first use exper-
imental data published by Zwieniecki et al. (2002) to estimate local root hydraulic
properties from multiple global conductance measurements. Then we perform a sen-
sitivity analysis of a maize root system to understand the key factors of its hydraulics.
Finally we develop applications regarding quantitative ideotypes.

3.1 Application to experimental data

In a first experiment, Zwieniecki et al. (2002) cut the proximal end of primary maize
root branches and measured the conductance of the remaining part. Repeating this
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Fig. 8 Application of the model to retrieve root local properties (experiments from Zwieniecki et al. 2002):
experimental results (symbols, each colour stand for one particular root) as compared to model best fit (solid
lines, with the corresponding colours) for both experiments (left panel proximal end cut, right panel distal
end cut)

procedure several times and for several root axes, they obtained data of water flow
under a given potential difference as a function of the distance to the root tip. The
experimental results are shown in Fig. 8 (left panel, symbols). Each colour stands for
a different root branch analysed by Zwieniecki et al. (2002). A second experiment
was performed on other RS in which the distal part of the roots that was cut (right
panel, symbols). This time theymeasured the conductance of the proximal root branch
region. Adding some microscopic cross sections to this framework, they observed two
distinct zones in the root branches: the axially nonconductive tip and a second radially
active zone whose cortex was composed by early metaxylem vessels. Although the
root axis is composed of two parts, we can consider that only the second part takes
up water and treat the RS as a homogeneous root made only by the oldest segments.
Equations from single homogeneous root section are consequently valid. The second
equality of Eq. (8) relates the root branch conductance Krs to the root segment length
lroot. It can be used directly for the first experiment consequently. This relation was
fitted to the dataset in order to optimize local axial and radial conductivity for each
root using the reference potential differences mentioned in the study of 0.38MPa. For
the second experiment the measured flow are given as the difference between the total
uncut root flow and the flow of the proximal end. So we present the results in a similar
form: Krs(lroot) − Krs,prox with Krs,prox = κtanh(τ z).

Only considering one root zone allows an extremely good fit to the observations
represented by the colour symbols. We obtain a very strong correlation between the
modelled (solid lines) and the measured conductances (symbols): r2 = 0.99 as shown
in the left panel representing the first experiment. The second experiment (right panel)
provides results almost as good as the previous ones: r2 = 0.92. In this plot, the results
are presented in a form similar to the the original one of Zwieniecki et al. (2002): as
the difference of the total root conductance minus the conductance of the proximal
zone. As it can be seen easily from the left panel, as the root grows (but this is valid
also for the second experiment), the conductance reaches a plateau just as the Eq. (8)
predicts it. It means that the xylem conductance becomes limiting the water flow in
these roots.
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3.2 Application example: a maize root system

The functions developed in the theory are of potential use for developing quantitative
ideotypes, i.e., quantitative estimatse of optimal root hydraulic or architectural traits
for drought stress tolerance. We consider as an example a maize RS generated by
RootTyp (Pags et al. 2004). This RS is made of several primary roots attached to the
basis of a stem. On these parallel primaries are attached regularly spaced laterals.
We used the relationships of Doussan et al. (1998b) (see Figure 4) to represent the
evolution of root segment radial and axial hydraulic propertieswith root segment age as
a succession of plateau for both primaries and laterals. The conductance of a mature
maize lateral root (whose oldest segments have the hydraulic properties of the last
plateau) can be predicted using the equations of the root branch with heteregeneous
properties section: we used an equation similar to Eq. (16) with three successive
plateau’s. To derive the total RS conductance we assume that the stem is not taking up
water (its radial conductivity is zero) and that its xylem conductance is hydraulically
non-limiting (its axial conductivity is very high). Consequently the RS conductance
is simply the sum of the primary conductances. As illustrated in the top panel of Fig.
9 the majority of the root primary surface for a mature maize RS is made by the oldest
zone so that we can consider with good approximation the primary root hydraulic
properties as uniform when analysing a mature root system. Around 70% of the root
surface of the primaries is made of segments older than 23 days, 18% have between 10
and 25 days, the remaining 12% is made of young segments. (younger than 10 days)
Similar contribution is observed for the root surface of the laterals (14% younger, 16%
intermediate and 66% older, respectively, the rest is the non-conductive tips).

We can use the model including laterals to calculate the primary conductance and
finally the RS conductance. The dinter parameter is provided by the mean value of the
inter-branches distance of RootTyp parametrized for maize (Couvreur et al. 2014).

In the bottom panels of Fig. 9 we consider a change of ±50% for the local conduc-
tivities of both primary (left) and lateral (right) roots, everything else kept constant.
In these panels the dashed lines stand for the radial conductivity while the solid lines
represent the axial intrinsic conductances. The colour blue indicate the primary roots
and the red colour, the laterals. The darker the lines, the younger the zones.

The interest of such an example is to evaluate the potential benefit of increasing
locally the root conductivity on RS conductance.Performing a sensitivity analysis on
mature roots, we investigate which zone is the most resistive part of complex root
systems. This sensitivity analysis is based on both hydraulic (obtained by Doussan
et al. 1998b) and architectural parameters (growth and shape parameters of the maize
plant for RootTyp (Pags et al. 2004).

We can first notice that hydraulic property relative changes of primaries would not
have a big impact on the total RS conductance. Indeed the axial conductivity of mature
primaries are high enough to conduct the total amount of water until the collar while
their radial conductivity is so low that even if the pressure head drops until the collar
would be negligible increasing them the consequent change in conductance would be
tiny.

The radial conductivity of young segments of lateral roots will have an important
(the biggest) impact on global conductance even if they are not the majority of lateral

123



1156 F. Meunier et al.

Fig. 9 Sensitivity analysis of a maize root system: the top panels represent a maize root system architecture
highlighting the different root zones: young (left), intermediate (center) and old (right) root zones for both
primaries (blue) and lateral (red) roots. Bottom subplots show the effect of modifying local radial (dashed)
or axial (solid) conductivities of the primary (left) or lateral (right) roots on the RS conductance in a one-
by-one sensitivity analysis. The curves are coloured as a function of the segment ages and consequently
their hydraulic conductivities: the darker, the younger

segments as it can be seen from the left top panel (they constitue only 14% of the
lateral root surfaces).

Javot and Maurel (2002) reviewed the aquaporin expression in roots and its effect
on the root hydraulic conductivity. They listed a set of examples demonstrating the
possible regulation of the root conductance according to outer stimuli. Using the
present model and this sensitivity analysis we can predict the magnitude of a change in
local radial conductivity needed to induce a desired modification of the water uptake
in a given soil (so far only in homogeneous soil conditions but the present model
could and will be coupled in the future with a soil model to simulate transient flow).
Another application would be the effect of drought period and its consequent root
cells shrinkage leading to a decrease of the soil–root contact and thus of the root
radial conductance on macroscopic behaviour (North and Nobel 1991). Finally, the
benefits of increasing local xylem vessels (Vercambre et al. 2002) or rise the radial
conductivity of certain zones (Blum 2010) can be predicted using both this approach
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and/or complete simulations (Leitner et al. 2014b). For example from the picture
(Fig. 9) it can readily be seen that increasing axial conductances of both young and
intermediate lateral segments would allow raising the RS conductance significantly.
Other architectural parameters can also be easily tested with this model. For example
increasing the root density by reducing the value of dinter.

If we performed here a one-by-one sensitivity analysis, combination of traits may
also be considered. RS ideotypes as suggested by Lynch (2013) for maize may be eval-
uated through the here-developed models if proposed under the form of quantitative
traits.

3.3 Allometric relations as a function of hydraulic properties

Allometry is the study of the relationship of body size to shape, anatomy, physi-
ology and finally behaviour (Damuth 2001). For root systems allemoteric relations
have already been proposed by Biondini (2008) linking structural functions to local
functional properties.

It has been demonstrated in the section theory (see single homogeneous root or root
system with laterals) that a maximal value of Krs is progressively approached as the
root length increases. This means that an optimal root length must exist in terms of
carbon cost as compared to root conductance gain. This optimal length allows defining
allometric relations between structural and functional root properties. Here below we
define these relations for 2 cases.

First we consider a single homogeneous branch and ask the following question: If
we increase the radial (resp. axial) conductivity of a homogeneous root by a factor a
(resp. by a factor of b), how much may we reduce the root length and keep the same
global conductance value?

Mathematically, this question can be addressed by finding the length l∗root that keeps
the same global conductance while its local hydraulic properties are altered.

l∗root such as Krs(lroot ) =
⎧
⎨

⎩

√
2πrakr kx tanh

(√
2πrakr

kx
l∗root

)

√
2πrkrbkx tanh

(√
2πrkr
bkx

l∗root
)

If we take as reference global conductance value half of the maximal original
conductance Krs(lroot ) = κ

2 . Using Eq. (8) we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l∗root
lroot

= 1√
a

atanh
(
1
2

1√
a

)

atanh
(
1
2

)

l∗root
lroot

= √
b
atanh

(
1
2

1√
b

)

atanh
(
1
2

)

(27)

Interestingly Eqs. (27) are independent on the root hydraulics or geometric prop-
erties. Increasing the radial (resp. axial) root branch conductivity, Eq. (27) a (resp. b)
provides the new length necessary to reach half of the original asymptotic conduc-
tance normalized by the previous length. Figure 10 shows these functions when the
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Fig. 10 Quantitative
phenotyping illustration: ratio of
new to old root branch length
needed to reach half the original
asymptotic conductance when
increasing the radial
conductivity by a factor a (solid
line) or the axial conductivity
when increasing the axial
conductivity by a factor b
(dashed line). The horizontal
axis represents the factor a or b

factor a (solid line) or b are in the range [1 10]. The new root branch length is always
smaller when increasing the radial conductivity as compared to increasing the axial
conductivity. Moreover the new branch length is always larger than 0.9 in this range
when raising the axial hydraulic properties while it decreases until 0.1 when focusing
on the radial hydraulic properties.

The second example shown in this section dealswithRS including laterals. Equation
(23) gives the maximal conductance of a branched root system as a function of lateral
conductance, local conductivities of the main root and the internodal distance. If the
internodal distance increases or the lateral conductance decreases, the asymptotic RS
conductance will progressively converge towards κ the asymptotic conductance of
an unbranched root branch. Beyond a maximal branching length or a minimal lateral
conductance, the lateral roots have nomore effects on theRS global conductance. Thus
for a set of three paramaters (kr, kx and dinter or Klat) a fourth one can be derived that
enables increasing the unbranched conductance by a fraction ε [−]. Mathematically
we are looking for the minimal K∗

lat or maximal d∗
inter such as:

(1 + ε) κ = κ+,lat (28)

with ε > 0.
Here again an analytical solution of the problem can be found. In Fig. 11, we

plot these relations as a function of kr to kx ratio. In the left subplot, five different
levels of Klat are considered while in the right subplot we draw the results for four
distinct internodal distances. In other words, if we consider a plant root whose kr

kx
ratio is fixed as well as Klat, then Fig. 11a gives the maximal internodal distance
that makes sense in a hydraulic framework that increases significantly the unbranched
conductance). Beyond this maximal internodal distance the primary axial intrinsic
conductance avoids a significant contribution of the laterals on the RS conductance.
The same explanation is valid for the second subplot: if kr

kx
and dinter are fixed then the

five lines represent the minimal conductance of laterals compatible with a significant
increase of the global conductance. ε was fixed to 5%. If the lateral conductance
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Fig. 11 Example of relationship between architecture and hydraulics: maximal internodal distance d∗
inter

(left) and minimal Klat
∗ (right) that allows increasing the RS asymptotic conductance by 5% as compared

to an unbranched root branch as a function of kr
kx

ratio of the main root

is lower, it is too tiny compared to the primary radial conductivity to significantly
contribute to the RS conductance.

3.4 Future model applications

The emergence of common database collecting root structural, topological and
hydraulic properties in a unique format (Lobet et al. 2015) makes possible the use
of the present model to calculate and to collect macroscopic parameters of any listed
species.

A coupling can also be made between any software analysing root architecture
from experiments (a non-exhaustive list is referenced by Lobet et al. 2013) and such
a model enabling an automatized analysis of global properties of genotypes if local
conductivity functions are available a priori. Otherwise an additional work of deter-
mining these functions will be needed but the equations presented in this paper can
also be useful to retrieve shapes and values of these conductivity relationships from
some global conductance measurements added to any technique delivering a complete
root architecture (topology, age and order distribution such as in Leitner et al. 2014a)

Finally this model could be coupled with the novel macroscopic root water uptake
model developed by Couvreur et al. (2012) to investigate the effect of modifying
any trait first on plant parameters and afterwards on plant ability to maintain or to
increase its yield (through transpiration) under drought condition when the environ-
ment is provided. In further studies, breeding proposals of Comas et al. (2013), Lynch
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(2013) and Wasson et al. (2012) will be tested in silico in various contexts defined as
a combination of soil and climate. Using a model solving water flow in soil and plant
will also allow us to retrieve the impact of given traits on soil moisture and poten-
tial distribution (Teuling et al. 2006). The new developments presented here allow us
to calculate plant-scale parameters of idealized root systems. These parameters (cal-
culated in homogeneous conditions) can be used for simulating root water uptake in
non-homogeneous conditions as demonstrated by Couvreur et al. (2012). Themethod-
ology presented here constitutes thus the first step in a larger study to predict the plant
performance in contrasted (and heterogeneous) environments. Our results are tools to
accurately and efficiently calculate plant-scale parameters that can be used in turn in
soil–root system model simulating the water flow to assess plant performance. They
consequently need to be coupled with soil model (de Jong van Lier et al. 2008). The
performance of root systems when simulated in contrasted environment will be indeed
highly dependent on the macroscopic parameters (that represent the ability to take up
water and the location of the root water uptake) as well as the pedoclimatic situations.
Next studies will consequently focus on plant–environment interactions in order to
look for best associations and to decipher key traits for an optimal root water uptake
in contrasted and heterogeneous conditions.

Some of the major roles of root systems are water and nutrient uptake from soils.
In this paper, we considered the hydraulic macroscopic parameters of the root system
and their dependence on the hydraulic properties of root segments and the distribution
of lateral roots. However, the search for an optimized root system is a multi-objective
optimization problem that should consider optimalwater but also nutrient uptake under
minimal carbon costs. This optimum might furthermore depend on the soil hydraulic
and chemical properties, the nutrient and water distribution and the climate. As far
as the nutrient uptake is considered, further work is needed to link the distribution of
nutrient uptake to root properties and nutrient distributions.But, the currentwork partly
contributes to this issue since water uptake distributions influence nutrient transport to
the root surfaces directly by advective flow and indirectly by changing water content
and consequently the diffusion coefficient. Next studies simulating simultaneouswater
and nutrient uptakes may help identifying key properties for the capture of these
resources in each type of environments.

Further studies will consequently focus on the use of such equations to decipher
the soil–plant relation in a complete Root–Soil model solving the water flow in soil
and root systems in three dimensions and in particular on the relations between the
macroscopic parameters and the cumulative transpiration in a range of environments.

4 Conclusion

We present novel mathematical functions that predict plant scale hydraulic properties
from measurable local structural and functional properties. The first parameter is the
root global conductance Krs; the second parameter describes the potential relative
uptake in uniform soil and is called the Standard Uptake Density SUD. These new
root models were developed based on analytical solutions (and their approximations)
of root water flow equations. Such functions may allow breeders to quantitatively a
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priori assess how a local root trait affects the global plant hydraulic properties, which
opens new avenues for optimizing plant drougth tolerance for instance.

Three types of simplistic root systems were considered: a homogeneous single
root branch, a single root branch split into several homogeneous zones or a single
root branch with regularly spaced laterals. For these three root systems, macroscopic
parameters can always be predicted as a function of local functional and architectural
root traits. The relevant architectural traits were the total root length, the length of
the homogeneous root zone, the distance between laterals. The functional parameters
were the axial conductance and the radial conductivity of the homogeneous zones, of
the primary and of the laterals.

For a homogeneous root or a root with laterals, it was demonstrated that amaximum
conductance is reached after a certain length for given set of kr and kx values, which
mean that optimal root lengths must exist in terms of hydraulics.

These models were successfully applied to laboratory data or used in sensitivity
analyses of RHA to investigate the impact of local traits on global plant hydraulic
behaviour. Finally they can be seen as a tool for deriving quantitative links between
hydraulic and architectural traits of root systems.

Based on these simple RS functions, models for more realistic RS architectures can
be built, paving the way for quantitative estimation of the impact of changes in root
traits on plant uptake efficiency. It is expected that other architectural traits like root
angles will play a role in the estimate of SUD with more complex systems.

Applications of these functions may allow one to quantitatively assess in silico
ideotypes, i.e. root systems with ideal traits for drought tolerance as proposed by
Comas et al. (2013), Lynch (2013) and Wasson et al. (2012).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix 1

Symbol Dimension Description

α − Fraction of the asymptotic conductance reached by root length l∗
αlat L3P−1T−1 Fraction of the asymptotic conductance reached with nlat
χ − Eq. (22)
χlat L3P−1T−1 Eq. (25)
dinter L Inter-branching distance
Hcollar P Collar water potential
Hs,eq P Equivalent soil water potential
Hsoil P Soil water potential
Hsr P Soil–root water potential
Hx P Xylem water potential
i − Root zone number
Jr L3T−1 Radial volumetric flow rate
Jx L3T−1 Axial volumetric flow rate
κ L3P−1T−1 Asymptotic root conductance
κ+ L3P−1T−1 Eq. (21)
κ− L3P−1T−1 Eq. (21)
κ+,lat L3P−1T−1 Eq. (23)
κ−,lat L3P−1T−1 Eq. (23)
Kcomp L3P−1T−1 Compensatory water uptake conductance
Krs L3P−1T−1 Global conductance of the root system
Krs,nlat L3P−1T−1 Root system conductance after addition of nlat laterals
kr L P−1T−1 Root radial conductivity
kx L4P−1T−1 Root axial conductivity
Kr L3P−1T−1 Segment radial conductance
Kx L3P−1T−1 Segment axial conductance
l∗ L Root length for a specific for a faction α of the asymptotic conductance
lroot L Root length
lseg L Segment length
Ninter − Number of root segments between two successive branches
n − Root segment number
nlat − Number of laterals
qr LT−1 Root radial flux
r L Root radius
SUD L−1 Standard uptake density
SU F − Standard uptake fraction
τ T−1 Root intrinsic property
Tact L3T−1 Actual transpiration of the root system
z L Distance to root tip

Appendix 2

The axial flow Jx
[
L3T−1

]
inside a homogeneous root is given by:

Jx (z, lroot ) = −kx

(
dHx (z, lroot )

dz

)
(29)
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This flow is a function of the position inside the root z [L] and the root length.
In Eq. (29), Hx [P] is the total water potential (the sum of gravitational and pressure
potentials). Mass conservation for a segment of length dz [L] (see Fig. 1a) leads to:

− 2πrkr (Hx (z, lroot ) − Hsoil) = d Jx (z, lroot )

dz
(30)

The left hand side of the previous equation gives the radial flow between the soil–
root interface and the inner root, [L3T−1] divided by a root layer dz [L]. Combining
Eqs. (29) and (30) we obtain a differential equation:

−2πrkr (Hx (z, lroot ) − Hsoil) = −kx
d2Hx (z, lroot )

dz2

The general solution of this partial derivative equation has the shape:

Hx (z, lroot ) = Hsoil + c1exp (τ z) + c2exp (−τ z)

with: τ =
√

2π rkr
kx

[L−1].
If we impose the following boundary conditions Jx (z = 0, lroot) = 0 and Hx

(
z =

lroot, lroot
) = Hcollar, we obtain the unique solution for the water potential inside the

root:

Hx (z, lroot ) = Hsoil + (Hcollar − Hsoil)
cosh (τ z)

cosh (τ l)
(31)

Using Eqs. (29) and (30) and the specific solution (31) we may find the axial and
radial flows:

Jx (z, lroot ) = kxτ (Hsoil − Hcollar )
sinh (τ z)

cosh (τ l)

Jr (z, lroot ) = dzkxτ
2 (Hsoil − Hcollar )

cosh (τ z)

cosh (τ l)

Appendix 3

To derive the discrete recursion formula from discretising the continuum equations we
consider a homogeneous root of length lroot and made of n segments of length lseg in a
homogeneous of water potential Hsoil . We start from the conductance definition: the
root branch conductance is the axial flow divided by the difference of water potential

1

Krs,n
= Hsoil − Hx,n

Jx,n

It is equivalent to:

1

Krs,n
= Hsoil − Hx,n−1 + Hx,n−1 − Hx,n

Jx,n
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Splitting into two terms the right hand side, it yields:

1

Krs,n
= Hsoil − Hx,n−1

Jx,n
+ Hx,n−1 − Hx,n

Jx,n

The first term can be expressed as the root conductance when one segment is
removed. The second term is simply the inverse of the segment axial conductance:

1

Krs,n
= 1

Krs,n−1

Jx,n−1

Jx
+ lseg

kx
(32)

On the other hand, the water flow entering the root inside the last root segment is:

Jx,n − Jx,n−1 = 2πrkr
(
Hsoil − Hx,n−1

)
lseg

Dividing by Jx,n−1:

Jx,n
Jx,n−1

− 1 = 2πrkr
(
Hsoil − Hx,n−1

)
lseg

Jx,n−1

We obtain

Jx,n
Jx,n−1

= 2πrkr lseg
Krs,n−1

+ 1 (33)

Finally combing Eqs. (32) and (33), it yields:

1

Krs,n
= lseg

kx
+ 1

2πrkr lseg + Krs,n−1

Which is equivalent to:

1

Krs,n
= 1

Kx
+ 1

Kr + Krs,n−1

Appendix 4

We want to solve the recurrent series shown in Fig. 6 to derive the root conductance
Krs,n after addition of n identical segments. It can be demonstrated that this sequence
converges and the possible values of convergence (κ− and κ+) can be expressed as
follows:

1

Krs
= 1

Kx
+ 1

Kr + Krs
⇐⇒ κ− = −Kr−

√
K 2
r +4Kr Kx
2 < 0

κ+ = −Kr+
√

K 2
r +4Kr Kx
2 > 0

(34)
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These solutions are found assuming Krs,n = Krs,n−1. As conductances are always
larger than zero, κ+ is the only possible solution.

We want to discover now how fast the addition of new resistances will make the
model converge to this value. To do sowe can rewrite equationEq. (34) as the following
sequence whose Krs,n is the nth element:

Krs,n+1 = f (Krs,n) = 1
1
Kx

+ 1
Kr+Krs,n

= Kx Krs,n + Kr Kx

Krs,n + (Kr + Kx )
= aKrs,n + b

cKrs,n + d

with:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x) =
(

1
Kx

+ 1
Kr+x

)−1

a = Kx

b = Kr Kx

c = 1
d = Kr + Kx

Formulated now as an homographic sequence we can evaluate the rate of conver-
gence. This convergence speed indeed is defined by:

| Krs,n+1 − x∗ |
| Krs,n − x∗ |

where x∗ is the value of convergence (= κ+). But in the case of an homographic
sequence, this can be simplified and tends to absolute value of the derivative of the
function f, | f ′

(x∗) | :

| Krs,n+1 − x∗ |
| Krs,n − x∗ | = | f (Krs,n) − f (x∗) |

| Krs,n − x∗ | →| f
′
(x∗) |

The derivative in this case yields:

| f
′
(x) |=

(
1

1
Kx

+ 1
Kr+x

)′

= K 2
x

(x + Kr + Kx )
2

This function evaluated in x∗ = κ+ yields:

| f
′
(x∗) |=

(
κ+
κ−

)2

The latter equality can be obtained with mathematical manipulations (not shown
here). Now we know the speed of convergence, the homographic sequence can be

123



1166 F. Meunier et al.

transformed into a geometrical one called hereafter vn :

vn+1 =
(

κ+
κ−

)2

vn

Link between both series is:

Krs,n = vnκ− − κ+
vn − 1

(35)

The previous steps allow us to predict the global conductance of a root with its
number n of identical segments writing first the following equality

vn = v1

[(
κ+
κ−

)2
]n

= K0 − κ+
K0 − κ−

[(
κ+
κ−

)2
]n

(36)

with K0 [L3T−1T−1] an initial conductance connected the considered root branch.
Because the v sequence tends to zero the equivalent resistance will tend towards the
positive fixed point, i.e. solution of Eq. (34) when the number of segments is high
enough. Finally combining Eqs. (35) and (36) we obtain:

Krs,n =
K0−κ+
K0−κ−

[(
κ+
κ−

)2]n
κ− − κ+

K0−κ+
K0−κ−

[(
κ+
κ−

)2]n − 1

And if K0 = 0 (i.e. no initial conductance attached to the root branch), we obtain:

Krs,n =

[(
κ+
κ−

)2]n − 1

1
κ−

[(
κ+
κ−

)2]n − 1
κ+

Appendix 5

To calculate the Standard Uptake Fraction of an homogeneous root, we proceed as
follow: the key variable in the SUF determination is the xylem potential of each
segment since, in homogeneous condition, the difference between this value and the
outside (uniform) potential gives the product of the radial conductance and the lateral
flux. Kirchoff and Ohm laws give us two equations (we define now the first segment at
the top of the root rather than at the distal end of the root and we consider a saturated
soil: Hsoil = 0 for sake of simplicity):

{
Kx,n

(
Hx,n − Hx,n−1

) = Jx,n
Jx,n−1 = Jx,n − Kr,n−1Hx,n−1
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These equations can be summarised as a system of two recurrent equations:

(
Hx,n

Jx,n

)
=

(
1 + Kr,n

Kx,n

1
Kx,n

Kr,n 1

)

.

(
Hx,n−1
Jx,n−1

)

At the nth segment of an homogeneous zone (Kr,n = Kr and Kx,n = Kx) we can
state:

(
Hx,n

Jx,n

)
=

(
1 + Kr

Kx

1
Kx

Kr 1

)n−1

.

(
Hx,1
Jx,1

)

Sincewe haveKrs,n = κ+α andTact = −Hcollarκ+α for the global root conductance
Krs,n and for the collar flow Tact, respectively.

(
Hx,n

Jx,n

)
=

(
1 + Kr

Kx

1
Kx

Kr 1

)n−1

.

(
Hcollar (1 + κ+α

Kx
)

−Hcollarκ+α

)
(37)

If we define matrix A =
(
1 + Kr

Kx

1
Kx

Kr 1

)
we can, finding the eigenvalues and eigen-

vectors of A, develop the following relations:

An−1 = P.Λn−1.P−1

with:

P =
[− κ−

Kr Kx
− κ+

Kr Kx

1 1

]

Λ =
[
1 − κ−

Kx
0

0 1 − κ+
Kx

]

and

P−1 =
[

Kr Kx
κ+−κ−

κ+
κ+−κ−

− Kr Kx
κ+−κ− − κ−

κ−−κ+

]

And combining Eq. (37) and the previous matrix definitions we find an exact solu-
tion of SUF for an homogeneous root, depending only on the kr

kx
ratio. Indeed, by

definition:

SU Fn = Jr,n
Tact

= Kr Hx,n

−κ+Hcollarα
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We obtain:

SU Fn = Kr

2κ+

((
1 − κ+

Kx

)n

−
(
1 + κ+

Kx

)n)

+ Kr

2κ+αKx

((
1 − κ+

Kx

)n

+
(
1 + κ+

Kx

)n)

Let us note that if the segment length is small enough, we can simplify thematrices:

P →
[ 1

κ
− 1

κ

1 1

]

Λ →
[
1 + κ

Kx
0

0 1 − κ
Kx

]

P−1 →
[

κ
2

1
2− κ

2
1
2

]

And the SUF simply becomes:

SU Fn → −(n + 1)
(
τ lseg

)2 + τ lseg
tanh(τ lroot )

Consequently:

SUD → τ

tanh(τ lroot )
� τcosh(τ z)

sinh(τ lroot )

the exact solution we found in the continuous model.
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