001     840429
005     20210129231831.0
024 7 _ |a 10.5194/hess-21-5009-2017
|2 doi
024 7 _ |a 1027-5606
|2 ISSN
024 7 _ |a 1607-7938
|2 ISSN
024 7 _ |a 2128/16066
|2 Handle
024 7 _ |a WOS:000412473100001
|2 WOS
024 7 _ |a altmetric:27082349
|2 altmetric
037 _ _ |a FZJ-2017-07946
082 _ _ |a 550
100 1 _ |a Schrön, Martin
|0 0000-0002-0220-0677
|b 0
|e Corresponding author
245 _ _ |a Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512374210_12598
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Köhli, Markus
|0 0000-0001-6098-3094
|b 1
700 1 _ |a Scheiffele, Lena
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Iwema, Joost
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 4
700 1 _ |a Lv, Ling
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Martini, Edoardo
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Baroni, Gabriele
|0 0000-0003-2873-7162
|b 7
700 1 _ |a Rosolem, Rafael
|0 0000-0002-4914-692X
|b 8
700 1 _ |a Weimar, Jannis
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mai, Juliane
|0 0000-0002-1132-2342
|b 10
700 1 _ |a Cuntz, Matthias
|0 0000-0002-5966-1829
|b 11
700 1 _ |a Rebmann, Corinna
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Oswald, Sascha E.
|0 0000-0003-1667-0060
|b 13
700 1 _ |a Dietrich, Peter
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Schmidt, Ulrich
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Zacharias, Steffen
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.5194/hess-21-5009-2017
|g Vol. 21, no. 10, p. 5009 - 5030
|0 PERI:(DE-600)2100610-6
|n 10
|p 5009 - 5030
|t Hydrology and earth system sciences
|v 21
|y 2017
|x 1607-7938
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/840429/files/hess-21-5009-2017.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/840429/files/hess-21-5009-2017.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/840429/files/hess-21-5009-2017.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/840429/files/hess-21-5009-2017.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/840429/files/hess-21-5009-2017.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/840429/files/hess-21-5009-2017.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840429
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129440
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HYDROL EARTH SYST SC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21