000840437 001__ 840437
000840437 005__ 20210129231833.0
000840437 0247_ $$2doi$$a10.2136/vzj2017.05.0107
000840437 0247_ $$2Handle$$a2128/16069
000840437 0247_ $$2WOS$$aWOS:000413428800005
000840437 0247_ $$2altmetric$$aaltmetric:25228411
000840437 037__ $$aFZJ-2017-07954
000840437 082__ $$a550
000840437 1001_ $$0P:(DE-HGF)0$$aTardieu, Francois$$b0$$eCorresponding author
000840437 245__ $$aRoot Water Uptake and Ideotypes of the Root System: Whole-Plant Controls Matter
000840437 260__ $$aMadison, Wis.$$bSSSA$$c2017
000840437 3367_ $$2DRIVER$$aarticle
000840437 3367_ $$2DataCite$$aOutput Types/Journal article
000840437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512377142_12599
000840437 3367_ $$2BibTeX$$aARTICLE
000840437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840437 3367_ $$00$$2EndNote$$aJournal Article
000840437 520__ $$aSimulations of plant water uptake in soil science are based on the interplay between soil and root properties, with an imposed flux or water potential at the stem base. The dialogue between roots and shoots is important in water uptake. The threshold soil water potential for water uptake represents the soil water potential at which stomatal control stops transpiration over 24 h. Measurements show that it has a large variability among species and cultivars. Isohydric plants prevent low leaf water potentials via stomatal control, so their threshold soil water potential is high. Anisohydric plants allow low leaf water potentials, resulting in lower thresholds. These behaviors have a genetic control and can be simulated via whole-plant models. In studied species, the hydraulic conductance in roots and shoots depends on the whole-plant transpiration rate. In particular, there is a “dialogue” between the daily alternations in the transpiration rate and the circadian oscillations in root hydraulic conductance that affect the hydraulic conductance of the rhizosphere, with appreciable consequences on water uptake. Root traits such as length, branching, or depth interact with shoot traits such as leaf area or stomatal control, thereby generating feedbacks. As a consequence, optimum root systems for water uptake at a given time are not always those associated with the best yields. Models that take these whole-plant results into account bring an extra level of complication but are probably indispensable whenever the aim is to optimize root traits in view of improved drought tolerance.
000840437 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000840437 588__ $$aDataset connected to CrossRef
000840437 7001_ $$0P:(DE-HGF)0$$aDraye, Xavier$$b1
000840437 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b2
000840437 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2017.05.0107$$gVol. 16, no. 9, p. 0 -$$n9$$p $$tVadose zone journal$$v16$$x1539-1663$$y2017
000840437 8564_ $$uhttps://juser.fz-juelich.de/record/840437/files/vzj-16-9-vzj2017.05.0107.pdf$$yOpenAccess
000840437 8564_ $$uhttps://juser.fz-juelich.de/record/840437/files/vzj-16-9-vzj2017.05.0107.gif?subformat=icon$$xicon$$yOpenAccess
000840437 8564_ $$uhttps://juser.fz-juelich.de/record/840437/files/vzj-16-9-vzj2017.05.0107.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840437 8564_ $$uhttps://juser.fz-juelich.de/record/840437/files/vzj-16-9-vzj2017.05.0107.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840437 8564_ $$uhttps://juser.fz-juelich.de/record/840437/files/vzj-16-9-vzj2017.05.0107.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840437 8564_ $$uhttps://juser.fz-juelich.de/record/840437/files/vzj-16-9-vzj2017.05.0107.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840437 909CO $$ooai:juser.fz-juelich.de:840437$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000840437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b2$$kFZJ
000840437 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000840437 9141_ $$y2017
000840437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840437 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000840437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2015
000840437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840437 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840437 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840437 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840437 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000840437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840437 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000840437 980__ $$ajournal
000840437 980__ $$aVDB
000840437 980__ $$aUNRESTRICTED
000840437 980__ $$aI:(DE-Juel1)IBG-3-20101118
000840437 9801_ $$aFullTexts