000840438 001__ 840438 000840438 005__ 20210129231833.0 000840438 0247_ $$2doi$$a10.1016/j.soilbio.2017.04.012 000840438 0247_ $$2ISSN$$a0038-0717 000840438 0247_ $$2ISSN$$a1879-3428 000840438 0247_ $$2WOS$$aWOS:000401877800018 000840438 0247_ $$2altmetric$$aaltmetric:19831926 000840438 037__ $$aFZJ-2017-07955 000840438 082__ $$a570 000840438 1001_ $$00000-0003-2284-9593$$aBauke, S. L.$$b0$$eCorresponding author 000840438 245__ $$aBiopore effects on phosphorus biogeochemistry in subsoils 000840438 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017 000840438 3367_ $$2DRIVER$$aarticle 000840438 3367_ $$2DataCite$$aOutput Types/Journal article 000840438 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512377612_12599 000840438 3367_ $$2BibTeX$$aARTICLE 000840438 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000840438 3367_ $$00$$2EndNote$$aJournal Article 000840438 520__ $$aBiopores are characterised by high concentrations of plant available nutrients and provide preferential pathways for root growth into the subsoil, thereby potentially enabling plants to access phosphorus (P) resources located in the subsoil. Here, we sampled biopores from a replicated agricultural field trial in Klein-Altendorf, Germany, to analyse their nutrient composition and P speciation as determined by Hedley sequential extraction and X-ray absorption near edge structure (XANES) spectroscopy. In addition, we analysed the oxygen isotopic composition of HCl P (δ18OHCl P) as an indicator of long-term effects of biological P turnover. We found that biopore effects were most pronounced in the subsoil, where the concentration of easily extractable (labile) P tended to be greater in biopores than in bulk soil, as evident in both Hedley sequential extraction and XANES spectroscopy. We assume that these findings result from inputs of organic matter from the topsoil as well as an input of Ca-particles into subsoil biopores by earthworm activity. Biologically cycled P was subsequently precipitated as Ca-P as evident by δ18OHCl P values close to equilibrium in biopores even at great depths. When incubating bulk soil samples with 18O-labelled water, however, we observed a significant increase of δ18OHCl P values in the topsoil, but only small if any changes of δ18OHCl P values in the subsoil. Thus, biopores present hotspots of P cycling in the subsoil, but the effect of biopores on overall P turnover in the bulk subsoil is limited. 000840438 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000840438 588__ $$aDataset connected to CrossRef 000840438 7001_ $$0P:(DE-HGF)0$$avon Sperber, C.$$b1 000840438 7001_ $$0P:(DE-Juel1)164361$$aSiebers, N.$$b2 000840438 7001_ $$0P:(DE-HGF)0$$aTamburini, F.$$b3 000840438 7001_ $$0P:(DE-Juel1)129427$$aAmelung, W.$$b4 000840438 773__ $$0PERI:(DE-600)1498740-5$$a10.1016/j.soilbio.2017.04.012$$gVol. 111, p. 157 - 165$$p157 - 165$$tSoil biology & biochemistry$$v111$$x0038-0717$$y2017 000840438 8564_ $$uhttps://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.pdf$$yRestricted 000840438 8564_ $$uhttps://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.gif?subformat=icon$$xicon$$yRestricted 000840438 8564_ $$uhttps://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000840438 8564_ $$uhttps://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.jpg?subformat=icon-180$$xicon-180$$yRestricted 000840438 8564_ $$uhttps://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.jpg?subformat=icon-640$$xicon-640$$yRestricted 000840438 8564_ $$uhttps://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.pdf?subformat=pdfa$$xpdfa$$yRestricted 000840438 909CO $$ooai:juser.fz-juelich.de:840438$$pVDB:Earth_Environment$$pVDB 000840438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b2$$kFZJ 000840438 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b4$$kFZJ 000840438 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000840438 9141_ $$y2017 000840438 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000840438 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOIL BIOL BIOCHEM : 2015 000840438 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000840438 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000840438 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000840438 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000840438 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000840438 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000840438 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000840438 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000840438 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000840438 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000840438 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000840438 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000840438 980__ $$ajournal 000840438 980__ $$aVDB 000840438 980__ $$aI:(DE-Juel1)IBG-3-20101118 000840438 980__ $$aUNRESTRICTED