001     840438
005     20210129231833.0
024 7 _ |a 10.1016/j.soilbio.2017.04.012
|2 doi
024 7 _ |a 0038-0717
|2 ISSN
024 7 _ |a 1879-3428
|2 ISSN
024 7 _ |a WOS:000401877800018
|2 WOS
024 7 _ |a altmetric:19831926
|2 altmetric
037 _ _ |a FZJ-2017-07955
082 _ _ |a 570
100 1 _ |a Bauke, S. L.
|0 0000-0003-2284-9593
|b 0
|e Corresponding author
245 _ _ |a Biopore effects on phosphorus biogeochemistry in subsoils
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512377612_12599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biopores are characterised by high concentrations of plant available nutrients and provide preferential pathways for root growth into the subsoil, thereby potentially enabling plants to access phosphorus (P) resources located in the subsoil. Here, we sampled biopores from a replicated agricultural field trial in Klein-Altendorf, Germany, to analyse their nutrient composition and P speciation as determined by Hedley sequential extraction and X-ray absorption near edge structure (XANES) spectroscopy. In addition, we analysed the oxygen isotopic composition of HCl P (δ18OHCl P) as an indicator of long-term effects of biological P turnover. We found that biopore effects were most pronounced in the subsoil, where the concentration of easily extractable (labile) P tended to be greater in biopores than in bulk soil, as evident in both Hedley sequential extraction and XANES spectroscopy. We assume that these findings result from inputs of organic matter from the topsoil as well as an input of Ca-particles into subsoil biopores by earthworm activity. Biologically cycled P was subsequently precipitated as Ca-P as evident by δ18OHCl P values close to equilibrium in biopores even at great depths. When incubating bulk soil samples with 18O-labelled water, however, we observed a significant increase of δ18OHCl P values in the topsoil, but only small if any changes of δ18OHCl P values in the subsoil. Thus, biopores present hotspots of P cycling in the subsoil, but the effect of biopores on overall P turnover in the bulk subsoil is limited.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von Sperber, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Siebers, N.
|0 P:(DE-Juel1)164361
|b 2
700 1 _ |a Tamburini, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Amelung, W.
|0 P:(DE-Juel1)129427
|b 4
773 _ _ |a 10.1016/j.soilbio.2017.04.012
|g Vol. 111, p. 157 - 165
|0 PERI:(DE-600)1498740-5
|p 157 - 165
|t Soil biology & biochemistry
|v 111
|y 2017
|x 0038-0717
856 4 _ |u https://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840438/files/1-s2.0-S0038071717301396-main-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840438
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOIL BIOL BIOCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21