000840448 001__ 840448
000840448 005__ 20240711113913.0
000840448 0247_ $$2doi$$a10.1016/j.nme.2017.01.012
000840448 0247_ $$2Handle$$a2128/16091
000840448 0247_ $$2WOS$$aWOS:000417293300066
000840448 037__ $$aFZJ-2017-07964
000840448 082__ $$a333.7
000840448 1001_ $$0P:(DE-HGF)0$$aKlimov, N. S.$$b0$$eCorresponding author
000840448 245__ $$aBeryllium Layer Response to ITER-Like ELM Plasma Pulses in QSPA-Be
000840448 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000840448 3367_ $$2DRIVER$$aarticle
000840448 3367_ $$2DataCite$$aOutput Types/Journal article
000840448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512381188_12595
000840448 3367_ $$2BibTeX$$aARTICLE
000840448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840448 3367_ $$00$$2EndNote$$aJournal Article
000840448 520__ $$aMaterial migration in ITER is expected to move beryllium (Be) eroded from the first wall primarily to the tungsten (W) divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new QSPA-Be plasma gun (SRC RF TRINITI). The Be layers (1 → 50 µm thick) are deposited on special castellated Be and W targets supplied by the ITER Organization using the Thermionic Vacuum Arc technique. Transient deuterium plasma pulses with duration ∼0.5 ms were selected to provide absorbed energy densities on the plasma stream axis for a 30° target inclination of 0.2 and 0.5 MJm−2, the first well below and the second near the Be melting point. This latter value is close to the prescribed maximum energy density for controlled ELMs on ITER. At 0.2 MJm−2 on W, all Be layer thicknesses tested retain their integrity up to the maximum pulse number, except at local defects (flakes, holes and cracks) and on tile edges. At 0.5 MJm−2 on W, Be layer melting and melt layer agglomeration are the main damage processes, they happen immediately in the first plasma impact. Melt layer movement was observed only near plasma facing edges. No significant melt splashing is observed in spite of high plasma pressure (higher than expected in ITER). Be layer of 10 µm thick on Be target has higher resistance to plasma irradiation than 1 and 55 µm, and retain their integrity up to the maximum pulse number at 0.2 MJm−2. For 1 µm and 55 µm thick on Be target significant Be layer losses were observed at 0.2 MJm−2.
000840448 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000840448 588__ $$aDataset connected to CrossRef
000840448 7001_ $$0P:(DE-HGF)0$$aPodkovyrov, V. L.$$b1
000840448 7001_ $$0P:(DE-HGF)0$$aKupriyanov, I. B.$$b2
000840448 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b3
000840448 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b4
000840448 7001_ $$0P:(DE-HGF)0$$aSafronov, V. M.$$b5
000840448 7001_ $$0P:(DE-HGF)0$$aKovalenko, D. V.$$b6
000840448 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Th.$$b7$$eCorresponding author
000840448 7001_ $$0P:(DE-HGF)0$$aLungu, C. P.$$b8
000840448 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b9
000840448 7001_ $$0P:(DE-HGF)0$$aDe Temmerman, G.$$b10
000840448 7001_ $$0P:(DE-HGF)0$$aMuzichenko, A. D.$$b11
000840448 7001_ $$0P:(DE-HGF)0$$aMarkin, A. A.$$b12
000840448 7001_ $$0P:(DE-HGF)0$$aTaratorkin, P. N.$$b13
000840448 7001_ $$0P:(DE-HGF)0$$aZabirova, N. E.$$b14
000840448 7001_ $$0P:(DE-HGF)0$$aZhitlukhin, A. M.$$b15
000840448 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2017.01.012$$gVol. 12, p. 433 - 440$$p433 - 440$$tNuclear materials and energy$$v12$$x2352-1791$$y2017
000840448 8564_ $$uhttps://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.pdf$$yOpenAccess
000840448 8564_ $$uhttps://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.gif?subformat=icon$$xicon$$yOpenAccess
000840448 8564_ $$uhttps://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840448 8564_ $$uhttps://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840448 8564_ $$uhttps://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840448 8564_ $$uhttps://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840448 909CO $$ooai:juser.fz-juelich.de:840448$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000840448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b3$$kFZJ
000840448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b7$$kFZJ
000840448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b9$$kFZJ
000840448 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000840448 9141_ $$y2017
000840448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840448 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000840448 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000840448 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000840448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840448 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000840448 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840448 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000840448 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000840448 9801_ $$aFullTexts
000840448 980__ $$ajournal
000840448 980__ $$aVDB
000840448 980__ $$aUNRESTRICTED
000840448 980__ $$aI:(DE-Juel1)IEK-2-20101013
000840448 980__ $$aI:(DE-Juel1)IEK-4-20101013
000840448 981__ $$aI:(DE-Juel1)IMD-1-20101013
000840448 981__ $$aI:(DE-Juel1)IFN-1-20101013