001     840448
005     20240711113913.0
024 7 _ |a 10.1016/j.nme.2017.01.012
|2 doi
024 7 _ |a 2128/16091
|2 Handle
024 7 _ |a WOS:000417293300066
|2 WOS
037 _ _ |a FZJ-2017-07964
082 _ _ |a 333.7
100 1 _ |a Klimov, N. S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Beryllium Layer Response to ITER-Like ELM Plasma Pulses in QSPA-Be
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512381188_12595
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Material migration in ITER is expected to move beryllium (Be) eroded from the first wall primarily to the tungsten (W) divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new QSPA-Be plasma gun (SRC RF TRINITI). The Be layers (1 → 50 µm thick) are deposited on special castellated Be and W targets supplied by the ITER Organization using the Thermionic Vacuum Arc technique. Transient deuterium plasma pulses with duration ∼0.5 ms were selected to provide absorbed energy densities on the plasma stream axis for a 30° target inclination of 0.2 and 0.5 MJm−2, the first well below and the second near the Be melting point. This latter value is close to the prescribed maximum energy density for controlled ELMs on ITER. At 0.2 MJm−2 on W, all Be layer thicknesses tested retain their integrity up to the maximum pulse number, except at local defects (flakes, holes and cracks) and on tile edges. At 0.5 MJm−2 on W, Be layer melting and melt layer agglomeration are the main damage processes, they happen immediately in the first plasma impact. Melt layer movement was observed only near plasma facing edges. No significant melt splashing is observed in spite of high plasma pressure (higher than expected in ITER). Be layer of 10 µm thick on Be target has higher resistance to plasma irradiation than 1 and 55 µm, and retain their integrity up to the maximum pulse number at 0.2 MJm−2. For 1 µm and 55 µm thick on Be target significant Be layer losses were observed at 0.2 MJm−2.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Podkovyrov, V. L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kupriyanov, I. B.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Linke, J.
|0 P:(DE-Juel1)129747
|b 3
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Safronov, V. M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kovalenko, D. V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Loewenhoff, Th.
|0 P:(DE-Juel1)129751
|b 7
|e Corresponding author
700 1 _ |a Lungu, C. P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pintsuk, G.
|0 P:(DE-Juel1)129778
|b 9
700 1 _ |a De Temmerman, G.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Muzichenko, A. D.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Markin, A. A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Taratorkin, P. N.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Zabirova, N. E.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Zhitlukhin, A. M.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1016/j.nme.2017.01.012
|g Vol. 12, p. 433 - 440
|0 PERI:(DE-600)2808888-8
|p 433 - 440
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/840448/files/1-s2.0-S2352179116301570-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840448
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129747
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129751
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129778
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21