001     840449
005     20240711113913.0
024 7 _ |a 10.1088/1402-4896/aa8b02
|2 doi
024 7 _ |a 0031-8949
|2 ISSN
024 7 _ |a 1402-4896
|2 ISSN
024 7 _ |a WOS:000414120500022
|2 WOS
024 7 _ |a altmetric:27090254
|2 altmetric
037 _ _ |a FZJ-2017-07965
082 _ _ |a 530
100 1 _ |a Richou, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Realization of High Heat Flux Tungsten Monoblock Type Target With Graded Interlayer for Application to DEMO Divertor
260 _ _ |a Bristol
|c 2017
|b IoP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512381313_12596
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. In DEMO, divertor targets must survive an environment of high heat fluxes (~up to 20 MW m−2 during slow transients) and neutron irradiation. One advanced concept for components in monoblock configuration concerns the insertion of a compositionally graded layer between tungsten and CuCrZr instead of the soft copper interlayer. As a first step, a thin graded layer (~25 μm) was developed. As a second step, a thicker graded layer (~500 μm), which is actually being developed, will also be inserted to study the compliant role of a macroscopic graded layer. This paper reports the results of cyclic high heat flux loading tests up to 20 MW m−2 and to heat flux higher than 25 MW m−2 that mock-ups equipped with thin graded layer survived without visible damage. First feedback on manufacturing steps is also presented. Moreover, the first results obtained on the development of the thick graded layer and its integration in a monoblock configuration are shown.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gallay, F.
|0 0000-0003-4075-5996
|b 1
700 1 _ |a Böswirth, B.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chu, I.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lenci, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Quet, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Greuner, H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kermouche, G.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Meillot, E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pintsuk, G.
|0 P:(DE-Juel1)129778
|b 9
700 1 _ |a Visca, E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a You, J. H.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Loewenhoff, Thorsten
|0 P:(DE-Juel1)129751
|b 12
|e Corresponding author
773 _ _ |a 10.1088/1402-4896/aa8b02
|g Vol. T170, p. 014022 -
|0 PERI:(DE-600)1477351-x
|p 014022 -
|t Physica scripta
|v T170
|y 2017
|x 1402-4896
856 4 _ |u https://juser.fz-juelich.de/record/840449/files/Richou_2017_Phys._Scr._2017_014022.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840449/files/Richou_2017_Phys._Scr._2017_014022.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840449/files/Richou_2017_Phys._Scr._2017_014022.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840449/files/Richou_2017_Phys._Scr._2017_014022.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840449/files/Richou_2017_Phys._Scr._2017_014022.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840449/files/Richou_2017_Phys._Scr._2017_014022.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840449
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129751
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21