001     840450
005     20240711092235.0
024 7 _ |a 10.1186/s40759-017-0031-3
|2 doi
024 7 _ |a 2128/16092
|2 Handle
024 7 _ |a altmetric:26957456
|2 altmetric
037 _ _ |a FZJ-2017-07966
082 _ _ |a 600
100 1 _ |a Chowdhury, Helal
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Reviewing the Class of Al-rich Ti-Al Alloys: Modeling High Temperature Plastic Anisotropy and Asymmetry
260 _ _ |a Berlin
|c 2017
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512381404_12595
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the last decades, the class of Ti-rich TiAl-based intermetallic materials has replaced many contemporary alloys till 900 °C. Due to higher oxidation resistance, 20% lower density and higher (about 150 °C more) operating temperature possibility of Al-rich TiAl alloys over Ti-rich side, phases from the Al-rich region of this alloy system are considered to be highly potential candidates for high temperature structural applications. Although there are a lot of works about Ti-rich alloys, however, investigation from the Al-rich side is very limited. This work reviews the class of Al-rich TiAl alloys in terms of phases, microstructures, morphology, deformation mechanisms, mechanical behaviors along with a possible micromechanical modeling approach. Single crystal like Ti-61.8at.%Al alloy from the Al-rich family has been chosen as an example for modeling high temperature anisotropy and tension-compression asymmetry. A possible comparison with Ti-rich side is also presented.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Altenbach, Holm
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Krüger, Manja
|0 P:(DE-Juel1)172056
|b 2
|e Corresponding author
700 1 _ |a Naumenko, Konstantin
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1186/s40759-017-0031-3
|g Vol. 3, no. 1, p. 16
|0 PERI:(DE-600)2821561-8
|n 1
|p 16
|t Mechanics of advanced materials and modern processes
|v 3
|y 2017
|x 2198-7874
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/840450/files/s40759-017-0031-3.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/840450/files/s40759-017-0031-3.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/840450/files/s40759-017-0031-3.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/840450/files/s40759-017-0031-3.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/840450/files/s40759-017-0031-3.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/840450/files/s40759-017-0031-3.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840450
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172056
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21