001     840454
005     20240711092240.0
024 7 _ |a 10.1007/s00419-017-1291-4
|2 doi
024 7 _ |a 0020-1154
|2 ISSN
024 7 _ |a 0939-1533
|2 ISSN
024 7 _ |a 1432-0681
|2 ISSN
024 7 _ |a WOS:000424876300006
|2 WOS
037 _ _ |a FZJ-2017-07970
082 _ _ |a 690
100 1 _ |a Chowdhury, Helal
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Critical Stresses Estimation by Crystal Viscoplasticity Modeling of Rate-Dependent Anisotropy of Al-rich TiAl Alloys at High Temperature
260 _ _ |a Berlin
|c 2018
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1518614591_19768
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Determining critical stresses for different slip systems is one of the most important parts in crystal plasticity modeling of anisotropy. However, the task of finding individual critical resolved shear stress (CRSS) for every single slip system, if not impossible, is formidable and a delicate one especially if the microstructure is very complex. Slip family-based, mechanism-based and morphology-based (e.g., phase interface) slip systems classification and hence determining CRSS consistent with experimental measurements are often used in crystal plasticity. In this work, a novel approach to determining CRSS at high homologous temperature has been proposed by crystal plasticity modeling of rate-dependent anisotropy. Two-internal-variable-based phenomenological crystal viscoplasticity model is adopted for simulating isothermal, two-phase, single-crystal-like Al-rich lamellar Ti–61.8at.%Al binary alloy at high-temperature compression state (1050∘C) by employing finite strain and finite rotation framework. To the best of authors’ knowledge, this is the first micromechanical modeling attempt with long-period superstructures. Conventional approaches related to CRSS estimation are also compared with the proposed one. Our material parameters are based on calibrating three different sets of compressive stain rate-controlled plasticity data taken from the loading of two different lamellar directions. It is revealed that the proposed approach works fine for rate-dependent anisotropy modeling, while other conventional approaches highly under- or overestimate available anisotropic experimental behavior of this alloy.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Naumenko, Konstantin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Altenbach, Holm
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krüger, Manja
|0 P:(DE-Juel1)172056
|b 3
773 _ _ |a 10.1007/s00419-017-1291-4
|0 PERI:(DE-600)1476349-7
|n 1-2
|p 65-81
|t Archive of applied mechanics
|v 88
|y 2018
|x 1432-0681
856 4 _ |u https://juser.fz-juelich.de/record/840454/files/10.1007_s00419-017-1291-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840454/files/10.1007_s00419-017-1291-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840454/files/10.1007_s00419-017-1291-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840454/files/10.1007_s00419-017-1291-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840454/files/10.1007_s00419-017-1291-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840454/files/10.1007_s00419-017-1291-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840454
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172056
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ARCH APPL MECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21