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An implementation of the polynomial chaos expansion is introduced as a fast solver of the equations of beam and

spin motion of charged particles in electromagnetic fields. We show that, based on the stochastic Galerkin method,

our computational framework substantially reduces the required number of tracking calculations compared to

the widely used Monte Carlo method.
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I. INTRODUCTION AND MOTIVATION

The aim of the JEDI1 collaboration is to measure the electric

dipole moment (EDM) of charged hadronic particles, such as

deuterons and protons. In the near future, a first direct EDM

measurement of the deuteron [1,2] will be carried out at the

COoler SYnchrotron COSY [3,4]. Toward that end, an RF

Wien filter [5] has recently been installed, which is operated

at some harmonic of the spin precession frequency, whereby

the sensitivity to the deuteron EDM is substantially enhanced.

To eliminate false EDM signals, it is of crucial importance

to understand the sources of imperfections in the accelerator

ring that is used to perform the measurements [6]. Particle

and spin tracking simulations constitute powerful tools to

accomplish this [7,8]. The realistic simulation of a precision

physics experiment in a storage ring [9] that includes also

mechanical and electromagnetic uncertainties in all of its

elements, however, represents a very challenging task.

Monte Carlo (MC) simulations as a tool to evaluate the

systematics of a precision experiment are computationally

very expensive, and the dimension (the number of random

parameters) in such simulations is particularly large. These

simulations usually have to be repeated many times in order to

obtain small uncertainties of the parameters under study. The

use of the stochastic Galerkin method (SGM) is motivated

by the requirement to replace the computer-expensive MC

method by a more efficient computational technique, which

transforms a system of differential equations that describe the

quantities of interest into an augmented system of equations

that contains only the coefficients [10]. It should be noted that

the SGM does not alter the intrinsic properties of the solver;

in fact, the SGM considers the solver as a black box.

To provide a more efficient simulation framework that

avoids the computationally expensive MC simulations, and

as a first step toward a fully systematic analysis of the

future EDM experiments at COSY, we recently conducted

a study to quantify the electromagnetic performance of the

above-mentioned RF Wien filter, taking into account various
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mechanical uncertainties [11]. This investigation made use of

the so-called polynomial chaos expansion (PCE) [12] as an

efficient and yet accurate alternative to the MC method.

In this paper, we describe a computational framework

based on the stochastic Galerkin method to determine the

solutions of the equations of beam and spin motion. This

approach substantially reduces the required number of tracking

simulations, but we still arrive at the same result as that of a

standard MC simulation. The methodology used is similar to

the one described in Ref. [11], but since we have access to

the equations of motion and spin governing the system, an

intrusive version of the PCE is employed.

The paper is organized as follows. The basic theoretical

foundations of the PCE are briefly reviewed in Sec. II, and

in Sec. III the SGM is introduced and applied to the beam

and spin equations. The main steps to perform the SGM are

described in Sec. IV. In Sec. V, the results obtained for a

uniform electromagnetic field and the RF field of an RF Wien

filter are compared quantitatively to the equivalent MC results.

The conclusions are presented in Sec. VI.

II. POLYNOMIAL CHAOS EXPANSION

The polynomial chaos expansion (PCE) is a stochastic

spectral method that allows for stochastically varying physical

entities Y , as a response of some random input ξ to be repre-

sented in terms of orthogonal polynomials. The PCE permits

Y to be expanded into a series of orthogonal polynomials

of degree p (the expansion order) as a function of the input

variables ξ . Thus it follows that

Y =

N
∑

i

ai�i(ξ ). (1)

Here �i are the multivariate orthogonal polynomials (the

basis functions) of degree p, and ai are the expansion

coefficients to be computed. The orthogonal polynomials

can be the Hermite, Legendre, Laguerre, or any other set

of orthogonal polynomials, depending on the probabilistic

distribution of the random input variables ξ . The physical

entities Y include electromagnetic fields (with uncertainties),

particle positions, velocities, and spin vectors.

The first step in building a polynomial chaos series is to

determine the probabilistic distribution of the input random
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variables and their number (the dimensionality of the problem).

Once known, the multivariate orthogonal polynomials can be

constructed using the three-term recurrence properties that can

be found, e.g., in [13].

In multidimensional problems, multivariate polynomials

are used to build the chaos basis. Obviously, the expansion

order must be known, and, as explained in [14,15], it can be

changed adaptively during processing.

The expansion coefficients can be calculated using intrusive

and nonintrusive methods. Nonintrusive methods consider the

deterministic code as a black box, i.e., they do not alter

the code or the equations. The expansion coefficients are

calculated using multiple calls to the deterministic code either

via projection or regression. Both require a number of N

realization pairs (ξ,Y) [see Eq. (1)], and they are further

elucidated below.

Projection requires the evaluation of expectation values and

relies on the orthogonality of the polynomials to compute the

coefficients in the form of

a =
E{Y�}

E{�2}
. (2)

The computation of the expectation values (E{·}) necessitates

the evaluation of integrals. Quadrature methods are one way

to do so, and they are commonly used in PCE analyses.

Depending on the type of input distribution, the corresponding

quadrature rule can be used. The Gauss-Laguerre quadrature,

for instance [16], is used in the case of uniformly distributed

random variables. It is widely known as nonintrusive spectral

projection (NISP) [17].

Regression, on the other hand, estimates the coefficients

that minimize the functional difference between the estimated

response Ŷ and the actual response Y , given by

a = arg min(E{Ŷ − Y}2). (3)

The solution of Eq. (3), obtained by linear regression, yields

ai = (�T · �) · � · Y . (4)

In the context of the work presented in this paper, the

regression method [18] provides more accurate results than the

projection method, and it is therefore used here to calculate

the expansion coefficients ai , which are subsequently used as

an input for the stochastic Galerkin solver.

III. STOCHASTIC GALERKIN METHOD APPLIED

TO BEAM AND SPIN DYNAMICS

A. Beam dynamics

One of the most common methods to solve differen-

tial equations is the Galerkin finite-element method (FEM)

[19,20]. In 1921, the Russian mathematician Boris Galerkin

proposed a method to solve differential equations based on

functional analysis. In contrast to other methods, such as finite-

difference (FD) schemes, the Galerkin method does not solve

the differential equations directly, rather it transforms them

into a variational form (a functional) that is then minimized.

The functions minimizing this functional are the solutions to

the required differential equations. The variational form is

constructed via the Galerkin projection techniques [17].

In this section, the construction of the variational form of the

beam and spin dynamic equations using the stochastic Galerkin

projection is described in detail. Neglecting forces other than

the electromagnetic ones acting on the charged particles, the

beam equations read [7,21]

d

dt
�v =

q

mγ

[

�E + �v × �B −
1

c2
�v(�v · �E)

]

,

(5)
d

dt
�r = �v.

Here, �E and �B represent the electric and magnetic fields, �v
denotes the velocity vector of the particles, q is the particle

charge, m is the mass, γ is the Lorentz factor, �r is the position

vector, and �v is the velocity vector of the particles.

The expansion of Eq. (5) in Cartesian coordinates yields a

linear system of six coupled ordinary differential equations,

d

dt
vx =

q

m

[

1

γ
Ex +

1

γ
vyBz −

1

γ
vzBy −

1

c2γ
vx(�v · �E)

]

,

(6a)

d

dt
vy =

q

m

[

1

γ
Ey +

1

γ
vzBx −

1

γ
vxBz −

1

c2γ
vy(�v · �E)

]

,

(6b)

d

dt
vz =

q

m

[

1

γ
Ez +

1

γ
vxBy −

1

γ
vyBx −

1

c2γ
vz(�v · �E)

]

, and

(6c)

d

dt
x = vx, (6d)

d

dt
y = vy, (6e)

d

dt
z = vz. (6f)

When intrabeam scattering and other collective effects are

neglected, the simulation of a beam of particles is equivalent

to individual simulations with different initial conditions. It

is furthermore assumed that the number of single-particle

simulations is sufficiently large to describe the beam. These

assumptions permit us to use stochastic methods to solve

the differential equations with random coefficients, or with

uncertain input variables, or even with random boundary val-

ues. According to a probabilistic distribution, each individual

particle of the population has a different initial position �r and

velocity vector �v. Therefore, the treatment of these parameters

as random vectors in Eq. (5) justifies the application of the

SGM.

Equation (5) describes an initial value problem, where the

initial values vary randomly. The initial values are expanded

using nonintrusive PC, particularly with linear regressions, and

then the SGM [22] is applied to solve Eq. (5). As an example,

the technique of solving for the variable vx is discussed in

detail below.
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vx is expanded as

vx =

N
∑

i

vx
(k)
i �i, (7)

where the vx
(k)
i are the chaos expansion coefficients. The

superscript (k) is used to identify the expansion coefficients,

and also to emphasize that the variables are discretized. The

coefficients are calculated according to

vx
(k)
i = (�T · �) · � · vx 0

, (8)

where vx 0
are the initial x-components of the particle velocities.

Inserting Eq. (7) into the left-hand side of Eq. (6a), we find

d

dt
vx =

d

dt

N
∑

i

vx
(k)
i �i =

N
∑

i

d

dt
vx

(k)
i �i . (9)

Now, the stochastic Galerkin projection is applied by

multiplying Eq. (9) with �l and taking the expectation value

E{·}, which gives

E

{

N
∑

i

d

dt
vx

(k)
i �i�l

}

=

N
∑

i

d

dt
vx

(k)
i E{�i�l}

=

N
∑

i

d

dt
vx

(k)
i 〈�i�l〉

=

N
∑

i

d

dt
vx

(k)
i

〈

�2
i

〉

δil . (10)

Here δil is the Kronecker delta, which results from the

orthogonality of the polynomials.

The electric field is also represented stochastically2 by the

finite series

Ex =

N
∑

i

ex
(k)
i �i . (11)

The Lorentz factor γ constitutes also a stochastic variable.

Unfortunately, it appears in the denominator of all terms in

Eq. (5). To solve this problem, 1/γ is expanded instead of γ .

Let α be defined as

α =
1

γ
. (12)

Then α is expanded as

α =

N
∑

i

α
(k)
i �i . (13)

The stochastic Galerkin projection is applied by multiplying

the product of Eqs. (11) and (13) by �k , and subsequently

2The Cartesian components of the electric and magnetic fields ( �E

and �B) are functions of the position vector �r , e.g., �E(�r ), �B(�r ), etc.

The dependence of the field components on position, e.g., Ex(�r ) =

Ex(x,y,z), does not pose a problem for the PCE method as long as

the input variables (e.g., r and v) are independent.

calculating the expectation value E{·}. It thus follows that

E







N
∑

i

ex
(k)
i �i

N
∑

j

α
(k)
j �j�l







=

N
∑

i

N
∑

j

ex
(k)
i α

(k)
j 〈�i�j�l〉

=

N
∑

i

N
∑

j

α
(k)
i ex

(k)
j Cij l . (14)

The Cij l = 〈�i�j�l〉 tensor constitutes a sparse rank-3

tensor. It is constructed offline by computing the tensor

product, which constitutes a CPU-intensive operation. The

formula to compute Cij l is provided in [22], and it works

only for low-order and low-dimensional cases. In addition,

it is limited to Gaussian-distributed random variables, and

consequently it applies only to Hermite polynomials. For the

actual version implemented here, Cij l is computed numerically

and is distribution-independent. The implementation has been

validated with a one-dimensional quadrature-based one and

yielded the same results.

Fortunately, Cij l needs to be computed only once. It can be

stored and reused when required. Although the multiplications

of the PCE coefficients involve the Cij l term, this arithmetic

operation does not introduce any computational overhead as

Cij l is sparse. This is illustrated in Fig. 1 for several typical

examples of the Cij l tensor.

The next term of Eq. (6a), namely the product of α,

velocity vy , and magnetic field Bz, presents a more complicated

situation because it involves multiple polynomials. This triple

product requires us to expand the two latter quantities as

vy =

N
∑

i

vy
(k)
i �i,

Bz =

N
∑

i

bz
(k)
i �i,

(15)

where vy
(k)
i and bz

(k)
i are the expansion coefficients of vy and

Bz, respectively. The multiplication of the three sums yields

αvyBz =

N
∑

i

N
∑

j

N
∑

k

α
(k)
i vy

(k)
j bz

(k)
k �i�j�k. (16)

By applying the stochastic Galerkin projection to Eq. (16),

it follows that

E{αvyBz�l} =

N
∑

i

N
∑

j

N
∑

k

α
(k)
i vy

(k)
j bz

(k)
k 〈�i�j�k�l〉

=

N
∑

i

N
∑

j

N
∑

k

α
(k)
i vy

(k)
i bz

(k)
j Dijkl . (17)

Dijkl is similar to Cij l , but it constitutes a rank-4 tensor.

The case for the third term of Eq. (6a) yields

E{αvzBy�k} =

N
∑

i

N
∑

j

N
∑

k

α
(k)
i vz

(k)
j by

(k)
k 〈�i�j�k�l〉

=

N
∑

i

N
∑

j

N
∑

k

α
(k)
i vz

(k)
j by

(k)
k Dijkl . (18)

063301-3



J. SLIM, F. RATHMANN, AND D. HEBERLING PHYSICAL REVIEW E 96, 063301 (2017)

FIG. 1. With the (m = 5)-dimensional problem and an expansion order of p = 4, the number of basis functions is P = 126 [see Eq. (7)

of [11]], which results in a (126 × 126 × 126) Cij l tensor. The sparsity of the rank-3 tensor Cij l is illustrated by fixing, e.g., the first index

to values of i = 14 [panel (a)], i = 26 (b), i = 37 (c), i = 45 (d), i = 69 (e), i = 77 (f), i = 86 (g), i = 93 (h), i = 105 (i), and i = 116 (j),

which yields the 10 sparse matrices shown. The multiplication of the PCE coefficients involving this tensor is very fast, as most of the tensor

elements are zero, while computing, storing, and loading of this tensor constitutes a CPU and memory-intensive operation.

The last term of the right-hand side of Eq. (6a), i.e.,

1

c2
αvx(�v · �E), (19)

is even more complicated because it involves a scalar product.

The scalar product operator multiplies the operands compo-

nentwise before summing them up. These operands, however,

are PC coefficients. The corresponding multiplication is in fact

a Galerkin one, which involves a series of double products [23],

given by

�v · �E =

3
∑

i

N
∑

j

N
∑

k

vi
(k)
j ei

(k)
k �j�k. (20)

This means that Eq. (20) requires the stochastic Galerkin

projection to compute a rank-5 tensor, which makes the method

highly inefficient [23]. To solve this problem, a pseudospectral

method [17,24] is used. The Galerkin projection is applied first

to the auxiliary variable gl (the one representing the scalar

product) and then second to the full product in Eq. (19). This

way, the rank-4 tensor product, introduced above in Eq. (17),

can be used. In particular, gl reads

gl = E{(�v · �E)�l} =

3
∑

i

N
∑

j

N
∑

k

vi
(k)
j ei

(k)
k Cij l, (21)

where the subscript l here constitutes a free variable. And then,

by applying the stochastic Galerkin projection, it follows that

E{αvx(�v · �E)�l} =

N
∑

i

N
∑

j

N
∑

k

α
(k)
i vx

(k)
j g

(k)
k Dijkl . (22)

The other five equations, Eqs. (6b)–(6f), are treated in

a similar fashion, and the system of ordinary differential

equations (ODEs) is considered solved.

B. Spin dynamics

The spin dynamics in an electromagnetic storage ring with

nonvanishing EDM is described by the generalized T-BMT

equation [25,26], which reads

d

dt
�S = ( ��MDM + ��EDM) × �S. (23)

Here, �S denotes the particle spin, and ��EDM and ��MDM are

the angular velocities associated with the magnetic (MDMs)

and electric dipole moments (EDMs). ��MDM and ��EDM are

defined as

��MDM = −
q

mγ

[

(1 + Gγ ) �B +

(

Gγ +
γ

1 + γ

)

�E × �β

c

−
Gγ 2

γ + 1
�β( �β · �B)

]

,

��EDM = −
q

m

η

2

[

�E

c
+ �β × �B −

γ

γ + 1
�β

(

�β ·
�E

c

)]

.

(24)

The particle velocity is given by �β = �v/c, G denotes

the anomalous magnetic moment, and η is a dimensionless

parameter, proportional to the particles’ EDM.
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Expanding Eq. (23) in Cartesian coordinates reads

d

dt
Sx = �MDM

y Sz − �MDM
z Sy + �EDM

y Sz − �EDM
z Sy,

d

dt
Sy = �MDM

z Sx − �MDM
x Sz + �EDM

z Sx − �EDM
x Sz, (25)

d

dt
Sz = �MDM

x Sy − �MDM
y Sx + �EDM

x Sy − �EDM
y Sx .

Before proceeding to the stochastic discretization of the

spin equation (23), some variables are introduced to simplify

the discretization process. Let

f1 =
1

γ
+ G, (26a)

f2 =
1

c

(

G +
1

γ

)

, (26b)

f3 =
Gγ

1 + γ
, (26c)

f4 =
γ

γ + 1
. (26d)

All the terms that interact with field and velocity compo-

nents are grouped together. It should be noted that here only γ

constitutes a stochastic variable. The PCE coefficients are also

calculated using the nonintrusive projection method, yielding

f1 =

N
∑

i

f1i�i, (27a)

f2 =

N
∑

i

f2i�i, (27b)

f3 =

N
∑

i

f3i�i, (27c)

f4 =

N
∑

i

f4i�i . (27d)

��MDM and ��EDM are rewritten as

��MDM = −
q

m
[f1

�B + f2( �E × �β) − f3
�β( �β · �B)],

��EDM = −
q

m

η

2

[

�E

c
+ �β × �B − f4

�β

(

�β ·
�E

c

)]

. (28)

In the following, the same methodology as described in

Sec. III A is applied to the spin equation. By induction from the

derivation described above, beginning with the x component

of the spin vector in Eq. (24), it follows that

N
∑

i

d

dt
Sx

(k) =

N
∑

i

N
∑

j

�MDM
y

(k)

i
Sz

(k)
j Cij l

−

N
∑

i

N
∑

j

�MDM
z

(k)

i
Sy

(k)
j Cij l

+

N
∑

i

N
∑

j

�EDM
y

(k)

i
Sz

(k)
j Cij l

−

N
∑

i

N
∑

j

�EDM
z

(k)

j
Sy

(k)
j Cij l . (29)

Rewriting, e.g., �MDM
y

(k)

i
in terms of the individual compo-

nents is equivalent to the following expression:

N
∑

i

�MDM
y

(k)

i

= −
q

m





N
∑

i

∑

j

f1
(k)
i by

(k)
j Cij l

+

N
∑

i

∑

j

∑

k

(

f2
(k)
i ez

(k)
i βx

(k)
j Dijkl−f2

(k)
i ex

(k)
i βz

(k)
j Dijkl

)

−

N
∑

i

N
∑

j

N
∑

k

f3
(k)
i βy

(k)
j h

(k)
k Dijkl



, (30)

where

hl = E{( �β · �B)�l} =

3
∑

i

N
∑

j

N
∑

k

βi
(k)
j bi

(k)
k Cij l . (31)

Here, l constitutes a free subscript [later on replaced by k in

Eq. (30)]. Similarly, the other components of the spin dynamics

equation (23) can be constructed, but this derivation is omitted

here for brevity.

IV. SIMULATIONS

The stochastic Galerkin method (SGM) transforms a system

of differential equations that describe the quantities of interest

into an augmented system of equations that contains only

the coefficients [10]. Depending on the dimension and the

expansion order p, the dimension of the new system of

equations is determined. The solutions of the system are

called stochastic modes, which are merely the time- and

position-dependent expansion coefficients that will later be

used to reconstruct the response for an arbitrary number of

particles.

To perform the simulations, the random variables have to be

identified first. These include the particle positions, velocities,

and spins. Next, the expansion order p is selected with the

smallest possible value in order for the augmented system of

equations to be as small as possible as well. The expansion

order can later be increased if the achieved accuracy appears

to be unsatisfactory. In this work, the expansion order was set

to p = 4, which, as shown later, yields very small parameter

errors.

Since Gaussian distributions were selected here, the basis

functions are Hermite polynomials. The distributions of the

random variables must be normalized in order for the SGM

to converge. The total number of polynomials (cardinality of

polynomials) is P = 126 [11].
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FIG. 2. Results of tracking 105 particles in a uniform electric and magnetic field [ �E = (1,0,0) V/m, �H = (0,1/173,0) A/m]. On the

horizontal axis, the time in seconds is shown over which the tracking simulation evolved, and on the vertical axis the resulting solutions for

x(t) in (a), y(t) (b), vx(t) (c), and vy(t) (d). The dotted blue lines represent the solution computed using the Monte Carlo simulations (MC),

while the dashed red lines visualize the solutions of the stochastic Galerkin method (SGM). In all four cases, positions and velocities are nearly

indistinguishable, indicating a very good agreement between MC and SGM (see also Fig. 4).

The particles are generated according to well-defined

phase-space distributions. An example is shown in Fig. 9

of [5]. Such populations might violate the independency

requirement that the parameters be random. In this case, the

Nataf transformation [27–29]3 can be used to circumvent the

problem. With all these parameters, the expansion coefficients

of the initial particle population are constructed using the linear

regression method, as described in Eq. (8).

With P = 126, Cij l is a 126 × 26 × 126 tensor. Unless a

new random quantity is added to the analysis, or the order of

the expansion is changed, the stored Cij l can be used when

required. When the expansion order p or the dimension of the

problem becomes large, pseudospectral methods may become

more favorable (see, e.g., [30]).

The SGM-based system of equations has been solved using

MATLAB.4,5 The deterministic ordinary differential equations

3Nataf transformations are isoprobabilistic transformations that

transform correlated Gaussian variables with arbitrary mean and vari-

ance into normally distributed ones. Without such a transformation,

the orthogonality of the basis functions would be violated.
4Mathworks, Inc. Natick, Massachusetts, United States

http://www.mathworks.com
5The simulations were performed on a HP Z840 workstation with

a single Xeon E5v4 CPU and a RAM capacity of 80 GB.

solver “ode45”6 was employed with a fixed time step of 1 ms,

and relative and absolute error tolerances of 10−13 and 10−20,

respectively. It is important to note that the same ODE solver

has been applied to both MC simulation and SGM calculation.

At the final stage, the performance of the SGM must be

evaluated quantitatively, with the help of an adequate error

analysis. Due to time and position dependencies, the error

calculation involves either the mean value (µ) or the standard

deviation (σ ) of the quantity under investigation, denoted in

the following by ζ . The corresponding errors are called ǫµ and

ǫσ , respectively, and they are defined as

ǫµ(t) =

∣

∣

∣

∣

µ[ζ (t)] − µ[ζ̂ (t)]

µ[ζ (t)]

∣

∣

∣

∣

, and (32a)

ǫσ (t) =

∣

∣

∣

∣

σ [ζ (t)] − σ [ζ̂ (t)]

σ [ζ (t)]

∣

∣

∣

∣

. (32b)

Here, ζ may refer to either the position, velocity, or spin

vector, while ζ̂ denotes the value estimated using the SGM.

To conduct an analysis similar to the one described in [12,31],

the exact initial conditions are inserted into both the MC and

the SGM solver, so that the solutions can be directly compared

on a particle-by-particle basis. In this way, the difference of

6The “ode45” solver is based on the fourth-order Runge-Kutta

integration technique.
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TABLE I. Parameters of a deuteron beam stored at COSY at a

momentum of 970 MeV/c, which are used in the particle and spin

tracking simulations for the two scenarios, described in Secs. V A

and V B.

Parameter Description Value

N number of particles 105

q deuteron charge 1.602 × 10−19 C

m deuteron mass 3.344 × 10−27 kg

G deuteron G-factor −0.143

c speed of light 2.998 × 108 m/s

β = v/c Lorentz β 0.459

ǫ beam emittance 10−6µm


p/p momentum spread 10−4

the two solutions reflects the true performance of the method

proposed in this paper.

When the dynamics includes electromagnetic fields that

are functions of position, time, or frequency, the stochastic

expansion coefficients may evolve as a function of time,

position, etc. This adds another level of complexity that the

SGM must be able to cope with. As a consequence, the

performance criterion in Eq. (32) must be modified to account

for position (or other) dependencies as well,

ǫµ(z) =

∣

∣

∣

∣

µ[ζ (z)] − µ[ζ̂ (z)]

µ[ζ (z)]

∣

∣

∣

∣

, and (33a)

ǫσ (z) =

∣

∣

∣

∣

σ [ζ (z)] − σ [ζ̂ (z)]

σ [ζ (z)]

∣

∣

∣

∣

. (33b)

Here, ζ may refer either to the position, velocity, or spin

dependence, and ζ̂ constitutes the corresponding estimated

value using the SGM, similar to Eq. (32).

V. NUMERICAL RESULTS

Two different simulation scenarios are considered here. In

the first scenario, described in Sec. V A, uniform fields are used

with realistic particle properties, while in the second scenario

(Sec. V B) a realistic beam passing through the numerically

computed fields7 of an RF Wien filter [5] is evaluated.

A. Uniform fields

This generic simulation scenario serves as a proof-of-

concept demonstrator for the SGM. 105 particles are consid-

ered,8 with phase-space-distributed initial positions and veloc-

ities (as described in [5]) traveling in a uniform electromagnetic

7Electromagnetic package of CST MWS, Computer Simulation

Technology, Microwave Studio, CST AG., Darmstadt, Germany,

http://www.cst.com
8Due to the limited computational resources to carry out the

equivalent MC simulations, only 105 particles have been considered

here. It should be noted that the SGM with the same resources can

support the simulation of a much larger number of particles.

FIG. 3. Result of spin tracking simulations in uniform fields using

the MC and the SGM. The horizontal axis shows the time t in seconds,

and the vertical axis shows the vertical component Sy(t) of the spin

vector �S(t).

field with �E = (1,0,0) V/m and �H = (0,1/173,0) A/m,9

during a time interval from 0 to 20 s.

The positions and transverse angles, x, x ′, y, and y ′, are

generated using a 2σ beam emittance of ǫx,y = 1 µm. The

transverse velocities vx and vy are calculated by multiplying

the transverse angles x ′ and y ′ by vz. vz itself is also modeled as

a Gaussian random variable with a mean value of β × c m/s

and a standard deviation that corresponds to a variation of

the beam momentum of 
p/p = 10−4. The beam parameters

used in the simulations are summarized in Table I.

Figure 2 shows the tracking results of the MC and the

SGM-based simulation for x, vx , y, and vy . Due to the extended

phase-space distribution of the beam, the transverse velocities

vx and vy do not vanish. The particles propagate with roughly

half the speed of light for a period of 20 s in a weak guiding

field. Therefore, large position deviations occur, as indicated in

panels (a) and (b). In the x direction, this leads to a transverse

Lorentz force and an oscillation of the particles around the

beam direction, while in the y direction the particles are simply

drifting. It was verified by simulations that a beam of vanishing

emittance ǫ and momentum variation 
p/p performs a perfect

drift motion in both the x and y directions.

Very good agreement between the MC method and the

SGM-based simulations can clearly be observed in Fig. 2. In

particular, no difference between the oscillation periods and

the positions x and velocities vx as a function of time are

observed. In terms of position y and velocity vy , as depicted

in Fig. 2(d), SGM and MC both indicate a pure drift motion.

The stochastic discretization of the T-BMT equation has

been implemented as well, and the numerical results are

shown in Fig. 3. The fields, despite the fact that they are

uniform, can be expanded to include the effects of undesired

physical phenomena, such as displacements or rotations. The

simulation scenario assumes a horizontally polarized deuteron

beam with initial spin vectors in the horizontal (ring) plane,

such that �S = (1,0,0). While the system of ODEs is solved

for Sx , Sy , and Sz, only the vertical spin component Sy is

displayed in Fig. 3. Figure 3 clearly shows that both the

9In vacuum, �B = µ0
�H = 4 × π × 10−7 �H .
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FIG. 4. (a) The error analysis of the uniform field scenario (Sec. V A) of the mean value ǫµ(t) using Eq. (32a), and (b) the standard deviation

ǫσ (t) using Eq. (32b) for the quantities x, y, vx , vy , and Sy in the time interval from t = 0 to 20 s.

oscillation magnitude and the frequency of MC and SGM

evolve synchronously.

By applying Eq. (32), the performance of the SGM is

demonstrated in Figs. 4(a) and 4(b). As we are dealing with

stochastic quantities, the mean and standard deviations are

used as performance indicators. All estimated SGM solutions

(x̂, v̂x , ŷ, v̂y , and Ŝy) do not deviate by more than 10−5 from

the MC solutions (x, vx , y, vy , and Sy).

B. Tracking with realistic RF Wien filter fields

In this section, we present simulation results using the MC

and the SGM, where both methods were applied to a deuteron

beam (see Table I) traveling along the z axis of an RF Wien

filter, whose electromagnetic fields were calculated using a

full-wave simulation based on CST7. A detailed description of

the calculations and the field distributions can be found in [5].

The waveguide RF Wien filter constitutes a novel device

that is presently installed at COSY-Jülich. The aim is to

perform a first direct measurement of the deuteron EDM [1].

The device is characterized by high-quality electromagnetic

fields that, when properly matched, provide a vanishing

Lorentz force. This is achieved by adjusting the field quotient

Zq ,10 and this makes the device transparent to the passage of

particles [see Eq. (3) of [5]].

At the location where the device is installed at COSY, the

beam size is adjustable by modifying the β function to values

10The field quotient is defined as the ratio of total electric field to

total magnetic field.

between about β = 0.4 and 4 m [4]. In this paper, we consider

only the case when β = 0.4. A typical initial phase-space

ellipse for a well-cooled beam at the entrance of the RF Wien

filter at z = 1 mm is shown in panel (a) of Fig. 5 (for other beam

properties, see also Table I). In panels (b)–(d), the phase-space

ellipses are displayed at other positions inside the RF Wien

filter at z = 210, 610, and 810 mm. In all cases, SGM and MC

results are in very good agreement.

The simulation results from the MC and SGM of the

trajectories in the xz plane of the drift region inside the RF

Wien filter are shown in Fig. 6. The MC results are represented

by the dashed red lines, and the SGM simulations by the

dotted red lines. Evidently, also here, the SGM results perfectly

coincide with their MC counterparts.

Using Eqs. (33a) and (33b), the deviation of the simulation

results of the SGM and the corresponding MC are quantified

and depicted in Fig. 7. The horizontal axis represents the beam

axis in the RF Wien filter. The solid lines denote the errors

calculated by considering the mean values ǫµ(z) with respect to

the horizontal position x and the velocity vx in the x direction,

while the dashed lines correspond to the errors related to the

standard deviation ǫσ (z) for the same quantities. The relative

deviation of xǫµ
and vxǫµ

does not exceed 10−7, while that of xǫσ

and vxǫσ
remains below 10−10. The smallness of the calculated

errors indicates the excellent performance of the SGM.

C. Comparison of simulation times

One additional performance criterion besides the error

analysis is the comparison of the required simulation times. In

the following, the generic scenario of Sec. V A is discussed,

with particles properties as listed in Table I.

FIG. 5. Comparison between the phase-space ellipses of the MC tracking results (blue crosses) and the SGM (red dots) along the beam

direction in the waveguide RF Wien filter at z = 1 (a), 210 (b), 610 (c), and 810 mm (d) [5] (Sec. V B).
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FIG. 6. Trajectory simulation of the xz plane in the drift region

along the RF Wien filter (Sec. V B) using the MC and the SGM.

The MC simulations require the evaluation of the system

of beam and spin ODEs [Eqs. (5) and (6)]. The MATLAB

simulation environment provides a powerful vectorization

option that has been used here to parallelize the execution of

the code. As shown in Fig. 8, for fewer than N ≈ 105 particles,

MC and SGM are about equally fast, but when N increases

further, the required time for the MC increases exponentially,11

while the corresponding time required for the SGM stays about

constant.

Regardless of the number of particles, the system of

ODEs involved in the SGM is evaluated exactly P times,12

corresponding to the number of basis functions. This is the

main reason why the SGM is so much faster than the MC,

without reduction in accuracy, as evidenced in Figs. 4(a), 4(b),

and 7. When the expansion order p is kept constant, the number

of basis functions remains constant as well, and hence also the

simulation time Ts = 4.14 ± 0.39 s, as shown in Fig. 8.

11The time required for the simulation of 2 × 106 particles on the

available machine6 amounted to 925.42 ± 0.82 s. Turning off the

vectorization option, tracking up to 109 particles becomes possible,

but the simulation time becomes prohibitively large.
12Even this number can be further reduced using a sparse version

of PCE [11].
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FIG. 7. Error analysis involving the mean value ǫµ(z) and the

standard deviation ǫσ (z) of the quantities x and vx along the beam

direction inside the waveguide RF Wien filter (Sec. V B).
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FIG. 8. Comparison of the simulation time required for the

parallelized MC and the SGM. For particle numbers below about

105, the methods are comparable. For larger particle numbers with

a constant expansion order of p = 4, the time required for the SGM

stays constant, while the demand for the MC increases exponentially.

VI. CONCLUSION

This paper reports on the application of the stochastic

Galerkin method (SGM) to beam- and spin-tracking simula-

tions. The method has been shown to work well with uniform

fields. We have also applied it to a realistic scenario, involving

the electromagnetic fields of a waveguide RF Wien filter, and

also in this case the results indicate very good agreement with

the Monte Carlo (MC) simulations, which were carried out

concurrently.

The error calculations carried out show that the

performance of the SGM is statistically equivalent to

the MC method, but with much lower computational demand.

While the computational effort of MC-based simulations

increases exponentially as a function of particle number, the

computational effort involved in the SGM stays constant,

independent of the number of tracked particles. The SGM

transforms the original system of beam and spin ODEs

into an augmented system of chaos coefficients, which are

determined and then used to reconstruct the response for an

arbitrary number of particles. The SGM is therefore capable

of tracking large particle numbers in a short time without

compromising on the accuracy, and in this way it provides a

very efficient yet accurate alternative to MC-based methods.

A potential future application of the SGM might be

spin-tracking calculations for storage rings, which are

necessary in particular for precision experiments, such as the

search for electric dipole moments. In such cases, an ultimate

precision is required in the presence of uncertainties of the

optical elements that constitute the machine. The SGM allows

one to conveniently take into account systematic errors from

different sources and to build a hierarchy of error sources. In

view of the computational effort required for the MC-based

error evaluation, the SGM may thus become an indispensable

tool for future precision experiments.
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