001     840596
005     20210129231852.0
024 7 _ |a 10.1109/TIP.2017.2664667
|2 doi
024 7 _ |a 1057-7149
|2 ISSN
024 7 _ |a 1941-0042
|2 ISSN
024 7 _ |a WOS:000398976000006
|2 WOS
037 _ _ |a FZJ-2017-08101
082 _ _ |a 004
100 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Automatic Attribute Profiles
260 _ _ |a New York, NY
|c 2017
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512572817_21217
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Morphological attribute profiles are multilevel decompositions of images obtained with a sequence of transformations performed by connected operators. They have been extensively employed in performing multiscale and region-based analysis in a large number of applications. One main, still unresolved, issue is the selection of filter parameters able to provide representative and non-redundant threshold decomposition of the image. This paper presents a framework for the automatic selection of filter thresholds based on Granulometric Characteristic Functions (GCFs). GCFs describe the way that non-linear morphological filters simplify a scene according to a given measure. Since attribute filters rely on a hierarchical representation of an image (e.g., the Tree of Shapes) for their implementation, GCFs can be efficiently computed by taking advantage of the tree representation. Eventually, the study of the GCFs allows the identification of a meaningful set of thresholds. Therefore, a trial and error approach is not necessary for the threshold selection, automating the process and in turn decreasing the computational time. It is shown that the redundant information is reduced within the resulting profiles (a problem of high occurrence, as regards manual selection). The proposed approach is tested on two real remote sensing data sets, and the classification results are compared with strategies present in the literature.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a NORTH STATE - Enabling Intelligent GMES Services for Carbon and Water Balance Modeling of Northern Forest Ecosystems (606962)
|0 G:(EU-Grant)606962
|c 606962
|f FP7-SPACE-2013-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Falco, Nicola
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dalla Mura, Mauro
|0 0000-0002-9656-9087
|b 2
700 1 _ |a Benediktsson, Jon Atli
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/TIP.2017.2664667
|g Vol. 26, no. 4, p. 1859 - 1872
|0 PERI:(DE-600)2034319-X
|n 4
|p 1859 - 1872
|t IEEE transactions on image processing
|v 26
|y 2017
|x 1941-0042
856 4 _ |u https://juser.fz-juelich.de/record/840596/files/07842555.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840596/files/07842555.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840596/files/07842555.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840596/files/07842555.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840596/files/07842555.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840596/files/07842555.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840596
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T IMAGE PROCESS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21