000840603 001__ 840603
000840603 005__ 20220930130137.0
000840603 0247_ $$2doi$$a10.1088/1367-2630/aa9d4b
000840603 0247_ $$2Handle$$a2128/16579
000840603 0247_ $$2WOS$$aWOS:000419378600001
000840603 0247_ $$2altmetric$$aaltmetric:31308170
000840603 037__ $$aFZJ-2017-08108
000840603 041__ $$aEnglish
000840603 082__ $$a530
000840603 1001_ $$0P:(DE-Juel1)164358$$aDas, Shibananda$$b0
000840603 245__ $$aConfined active Brownian particles: theoretical description of propulsion-induced accumulation
000840603 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2018
000840603 3367_ $$2DRIVER$$aarticle
000840603 3367_ $$2DataCite$$aOutput Types/Journal article
000840603 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516106080_14944
000840603 3367_ $$2BibTeX$$aARTICLE
000840603 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840603 3367_ $$00$$2EndNote$$aJournal Article
000840603 520__ $$aThe stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein–Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker–Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.
000840603 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000840603 588__ $$aDataset connected to CrossRef
000840603 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1$$eCorresponding author$$ufzj
000840603 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G$$b2$$eCorresponding author
000840603 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/aa9d4b$$p015001$$tNew journal of physics$$v20$$x1367-2630$$y2018
000840603 8564_ $$uhttps://juser.fz-juelich.de/record/840603/files/Das_2018_New_J._Phys._20_015001.pdf$$yOpenAccess
000840603 8564_ $$uhttps://juser.fz-juelich.de/record/840603/files/Das_2018_New_J._Phys._20_015001.gif?subformat=icon$$xicon$$yOpenAccess
000840603 8564_ $$uhttps://juser.fz-juelich.de/record/840603/files/Das_2018_New_J._Phys._20_015001.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840603 8564_ $$uhttps://juser.fz-juelich.de/record/840603/files/Das_2018_New_J._Phys._20_015001.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840603 8564_ $$uhttps://juser.fz-juelich.de/record/840603/files/Das_2018_New_J._Phys._20_015001.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840603 8564_ $$uhttps://juser.fz-juelich.de/record/840603/files/Das_2018_New_J._Phys._20_015001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840603 8767_ $$88087693$$92017-12-08$$d2017-12-11$$eAPC$$jZahlung erfolgt$$paa9d4b
000840603 909CO $$ooai:juser.fz-juelich.de:840603$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000840603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164358$$aForschungszentrum Jülich$$b0$$kFZJ
000840603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ
000840603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000840603 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000840603 9141_ $$y2018
000840603 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000840603 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840603 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840603 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2015
000840603 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000840603 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000840603 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840603 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840603 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840603 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840603 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840603 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840603 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840603 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840603 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840603 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840603 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000840603 980__ $$ajournal
000840603 980__ $$aVDB
000840603 980__ $$aUNRESTRICTED
000840603 980__ $$aI:(DE-Juel1)IAS-2-20090406
000840603 980__ $$aAPC
000840603 9801_ $$aAPC
000840603 9801_ $$aFullTexts