000840609 001__ 840609
000840609 005__ 20240610121313.0
000840609 0247_ $$2doi$$a10.3390/s17122798
000840609 0247_ $$2Handle$$a2128/16136
000840609 0247_ $$2WOS$$aWOS:000423285800098
000840609 037__ $$aFZJ-2017-08114
000840609 082__ $$a620
000840609 1001_ $$0P:(DE-Juel1)130633$$aFaley, Michael$$b0$$eCorresponding author
000840609 245__ $$aSuperconducting Quantum Interferometers for Nondestructive Evaluation
000840609 260__ $$aBasel$$bMDPI$$c2017
000840609 3367_ $$2DRIVER$$aarticle
000840609 3367_ $$2DataCite$$aOutput Types/Journal article
000840609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512570516_21213
000840609 3367_ $$2BibTeX$$aARTICLE
000840609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840609 3367_ $$00$$2EndNote$$aJournal Article
000840609 520__ $$aWe review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs). The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm) are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna
000840609 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000840609 7001_ $$0P:(DE-HGF)0$$aKostyurina, E. A.$$b1
000840609 7001_ $$0P:(DE-HGF)0$$aKalashnikov, K. V.$$b2
000840609 7001_ $$0P:(DE-HGF)0$$aMaslennikov, Yu. V.$$b3
000840609 7001_ $$0P:(DE-HGF)0$$aKoshelets, V. P.$$b4
000840609 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5
000840609 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s17122798$$n12$$p2798$$tSensors$$v17$$x1424-8220$$y2017
000840609 8564_ $$uhttps://juser.fz-juelich.de/record/840609/files/sensors-17-02798.pdf$$yOpenAccess
000840609 8564_ $$uhttps://juser.fz-juelich.de/record/840609/files/sensors-17-02798.gif?subformat=icon$$xicon$$yOpenAccess
000840609 8564_ $$uhttps://juser.fz-juelich.de/record/840609/files/sensors-17-02798.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000840609 8564_ $$uhttps://juser.fz-juelich.de/record/840609/files/sensors-17-02798.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000840609 8564_ $$uhttps://juser.fz-juelich.de/record/840609/files/sensors-17-02798.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000840609 8564_ $$uhttps://juser.fz-juelich.de/record/840609/files/sensors-17-02798.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000840609 8767_ $$8sensors-236037$$92017-11-29$$d2017-11-29$$eAPC$$jZahlung erfolgt$$psensors-236037$$zCHF 1530,-
000840609 909CO $$ooai:juser.fz-juelich.de:840609$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000840609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000840609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000840609 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000840609 9141_ $$y2017
000840609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840609 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000840609 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000840609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2015
000840609 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000840609 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000840609 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840609 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000840609 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000840609 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000840609 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000840609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840609 920__ $$lyes
000840609 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000840609 9801_ $$aFullTexts
000840609 980__ $$ajournal
000840609 980__ $$aVDB
000840609 980__ $$aUNRESTRICTED
000840609 980__ $$aI:(DE-Juel1)PGI-5-20110106
000840609 980__ $$aAPC
000840609 981__ $$aI:(DE-Juel1)ER-C-1-20170209