
sensors

Review

Superconducting Quantum Interferometers for
Nondestructive Evaluation

M. I. Faley 1,* ID , E. A. Kostyurina 2,3, K. V. Kalashnikov 2,3, Yu. V. Maslennikov 3,

V. P. Koshelets 3 and R. E. Dunin-Borkowski 1 ID

1 Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;

r.dunin-borkowski@fz-juelich.de
2 Moscow Institute of Physics and Technology, Moscow 141700, Russia; kostyurina.katya@gmail.com (E.A.K.);

kalashnikovkv@gmail.com (K.V.K.)
3 Kotel’nikov Institute of Radio Engineering & Electronics RAS, Moscow 125009, Russia;

cryoton@inbox.ru (Y.V.M.); valery@hitech.cplire.ru (V.P.K.)

* Correspondence: m.faley@fz-juelich.de

Received: 8 October 2017; Accepted: 29 November 2017; Published: 6 December 2017

Abstract: We review stationary and mobile systems that are used for the nondestructive evaluation of

room temperature objects and are based on superconducting quantum interference devices (SQUIDs).

The systems are optimized for samples whose dimensions are between 10 micrometers and several

meters. Stray magnetic fields from small samples (10 µm–10 cm) are studied using a SQUID

microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen

cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to

the sample. The SQUID microscope does not disturb the magnetization of the sample during image

recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil.

For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar

gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of

bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment.

High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic

field resolution of ~4 fT/
√

Hz at 77 K. This sensitivity is improved to ~2 fT/
√

Hz at 77 K by using

a soft magnetic flux antenna.

Keywords: magnetic analysis; magnetic sensors; nondestructive testing; scanning probe

microscopy; SQUIDs

1. Introduction

Nondestructive evaluation (NDE) describes the characterization of the structure and/or

functionality of an object without compromising its usability. The recording of magnetic fields is

a non-invasive contactless method that provides a direct view of magnetic features and/or electrical

currents deep in the object. For an NDE technique that involves magnetic field measurement, it is

challenging to construct a magnetic sensor that has high magnetic field sensitivity, high dynamic

range and a broad frequency bandwidth that allows high sampling rates. Superconducting quantum

interference devices (SQUIDs) provide unprecedented sensitivity down to the sub-fT/
√

Hz range,

a broad frequency range of >1 MHz and a dynamic range of up to ~120 dB [1]. SQUID-based

NDE systems have been developed for the investigation of objects that have dimensions of

nanometers (nanoSQUID microscopes [2]) to kilometers (nondestructive archeology or geomagnetic

evaluation [3,4]). Related scanning methods vary from 3D piezo stages to airborne systems transported

by planes or helicopters. Successful applications of SQUID-based NDE systems from the last thirty

years for monitoring materials and structures have been described and assessed elsewhere [5].
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The disadvantages of such systems include their operation at cryogenic temperatures and, hence,

the expense of performing routine measurements. In spite of the relatively high price of cryogenic

equipment and technical difficulties, SQUID-based systems are employed when the required efficiency

cannot be reached using alternative NDE techniques [6]. SQUID-based NDE systems have been

developed and employed for the detection of defects in steel plates [7], the study of stress–strain

states in ferromagnetic materials [8], the detection of ruptures in steel ropes on bridge structures [9],

and the detection of cracks in turbine blades of aircraft engine turbine blades [10]. Here, we briefly

review stationary and mobile low-Tc and high-Tc SQUID systems that have been developed in

Forschungszentrum Jülich (FZJ) and the Kotel’nikov Institute of Radio Engineering and Electronics

(IRE) for the NDE of room temperature objects, in the context of those developed elsewhere.

2. Basic Principle of Operation and Important Features of SQUIDs

A direct current SQUID (DC SQUID) is essentially a loop of superconductor interrupted by

two Josephson junctions (JJs) that have non-hysteretic current-voltage characteristics and, in an ideal

case, identical critical currents Ic and normal state resistances Rn (see [1,11,12] and references therein).

The operation of SQUIDs is based on the dependence of the phase shift of the wave-function of

Cooper pairs on the magnetic flux passing through the SQUID loop, similar to the phase shift of

the wave-function of a charged particle in the Aharonov-Bohm effect. Both effects result from the

fundamental dependence of the canonical momentum of a charged particle
→
p = m

→
v + q

→
A on the

magnetic vector potential
→
A and represent a particular case of the presence of a geometric phase

shift (Berry phase) in the wave function of a charged particle after its adiabatic evolution around

a closed path in the parameter space of magnetic vector potentials [13]. A DC SQUID is sensitive to

the magnetic flux Φ that passes through its loop, leading to spatial variations in the phase of the wave

function of Cooper pairs in the superconducting electrodes. These spatial variations lead to phase

shifts ∆ϕ1 and ∆ϕ2 at the Josephson junctions and, as a result, to a voltage signal. At an optimal bias

current of IB
∼= 2Ic, the DC voltage V on a DC SQUID depends periodically on the magnetic flux Φ that

passes through the SQUID loop according to the expression [14]

V ≈
Rn IB

2

√

1 −

(

2Ic

IB
cos

πΦ

Φ0

)2

, (1)

where the modulation period is equal to the magnetic flux quantum Φ0 ≈ 2.07 × 10−15 T·m2.

The periodic dependence of the SQUID voltage on magnetic field can be linearized by implementing

a dynamic range higher than 120 dB and a slew rate larger than 1 MΦ0/s using the DC SQUID control

electronics, providing a digital negative feedback signal within each period and counting the periods

when the magnetic flux exceeds Φ0 [15].

According to Equation (1), a SQUID is sensitive to the magnetic flux Φ that penetrates through

its loop. For sensitive measurements of magnetic fields, the SQUID should be equipped with

a superconducting flux transformer that collects the magnetic flux in a pickup loop from a relatively

large area and concentrates it into the SQUID loop using a multiturn input coil. The magnetic field

sensitivity BN of a DC SQUID magnetometer with an inductively coupled superconducting flux

transformer can be estimated according to the equation

BN =
Lpu + Li

kApu
√

LiLS
S1/2

Φ , (2)

where Sφ is the magnetic flux noise of the high-Tc DC SQUID, Lpu and Apu are the inductance and

the area of the pickup loop, respectively, k is the coupling coefficient between the input coil and the

SQUID loop, Li is the inductance of the input coil and LS is the inductance of the SQUID loop.
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3. Low-Tc vs. High-Tc JJs and DC SQUIDs: Technologies and Properties

Currently, the most sensitive detector for subtle magnetic field measurements is a DC SQUID

magnetometer based on low-Tc superconducting polycrystalline Nb films and planar JJs. A magnetic

field resolution below 1 fT/
√

Hz at 4.2 K has been demonstrated [16]. Thin film JJs based on Nb films

are widely implemented in superconducting electronics, including low-Tc DC SQUID magnetometers.

The noise and signal characteristics of such magnetometers depend directly on the quality of the JJs.

High quality JJs with a small spread of parameters over the substrate and between batches are vitally

important for the development of low-noise sensors that are suitable for NDE applications. Several

methods for the fabrication of shunted JJs have been developed. These methods include the use of

double-barrier junctions with an additional normal layer between two conventional JJs [17,18] and

Nb/αSi/Nb structures with a doped Si layer [19]. However, the most widely used and best-developed

method involves the use of Nb/Al-AlOx/Nb tunnel junctions [20,21] with an additional external

resistive shunt made from Mo (Figure 1). The Mo shunt resistor is highlighted in green in Figure 1.

 

Figure 1. Schematic representation of a Nb-based low-Tc Josephson junction developed at IRE.

One of the factors that results in a reduction in the quality of Nb-based junctions is the presence

of internal mechanical stress in the thin superconducting Nb films, which can lead to destruction of

the tunnel barrier and junction degradation. The surface roughness of the bottom electrode caused by

the internal stress increases Al diffusion at the Nb-Al boundary and can lead to micro-shortcuts. These

micro-shortcuts typically result in increased noise levels of the JJs and SQUIDs. In order to minimize

tension in Nb films prepared using DC magnetron sputtering, the operating modes of the magnetron

have been investigated. Experimental studies of the dependence of internal tension on magnetron

power level and Ar pressure have shown that the optimal deposition of Nb films is realized at a power

of ~600 W for a target area of ~122 cm2 and an Ar pressure of ~10−2 mbar.

The typical capacitance of the Nb/AlOx/Nb JJs that are used in SQUID sensors is ~0.5 pF at

a critical current density of the JJs of ~200 A/cm2 and an area of 3.2 µm × 3.2 µm [22]. Up to ~100

low-Tc DC SQUID structures with integrated input coils can be produced simultaneously on a single

large-area Si wafer. Pick-up loops of superconducting flux transformers made from thin Nb wires can

be used to measure the magnetic field or field gradient and to transfer it, in the form of an induced

superconducting current, into the multiturn thin film input coil, which concentrates the magnetic

flux into the SQUID loop, which is integrated on the same substrate. The SQUID sensor is placed in

a superconducting shield, in order to isolate it from the parasitic influence of external electromagnetic

interference. Standard highly sensitive low-Tc SQUIDs are available from commercial companies

(see, for example, [23]). Special SQUID sensors that are intended for NDE experiments have been

developed and produced in small quantities at IRE (see Figure 2). The primary advantage of using

such self-made low-Tc SQUID sensors is the possibility to adapt their design to a particular NDE

system, in order to reduce the coupling of parasitic background signals to the SQUID. The current

design of a SQUID loop includes 4 balanced slots that are coupled gradiometrically to two input coils,

one modulation coil and one feedback coil. The sensors are encapsulated inside a Nb shield together

with screw contacts that are machined from Nb and provide a superconducting connection to the Nb
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wire of the gradiometric pick-up loops. The Nb contact pads on the SQUID chip are connected to the

Nb screw contacts using a 25-µm-diameter Nb wire.

 

Figure 2. Schematic representation of Nb-based low-Tc DC SQUID sensor developed at IRE.

The cylindrical superconducting (Nb) shield has been removed for clarity.

High-Tc JJs and SQUIDs are based on epitaxial films of the high-Tc superconductor YBa2Cu3O7−x

(YBCO). The much shorter and highly anisotropic coherence length in YBCO (ξab ≈ 2 nm, ξc ≈ 0.4 nm),

as well as the d-wave symmetry of the superconducting order parameter and the strong dependence

of the order parameter on the local strain and oxygen content in YBCO, when compared to the

isotropic coherence length ξ ≈ 38 nm and s-wave symmetry of the superconducting order parameter

in polycrystalline Nb films, results in a completely different technology for high-Tc JJs. Grain

boundaries can play the role of weak links in YBCO, whereas they do not significantly suppress

the superconducting order parameter in Nb. High-Tc JJs are based mainly on grain boundary weak

links, which can be realized by the epitaxial growth of YBCO films on bicrystal substrates [24,25] or

on sharp steps etched on the surfaces of single crystal substrates [26–31]. Step-edge JJs can be placed

on any part of a substrate, allowing the more efficient use of the substrate surface to design more

efficient SQUID structure(s) with grain boundaries that are located exclusively at the JJ (see Figure 3).

Newly-developed high-Tc step-edge JJs are based on the presence of two synchronously operating 45◦

[100]-tilted grain boundaries and possess optimal parameters for operation in high-Tc DC SQUIDs:

critical current Ic ≈ 40 µA, capacitance C ≈ 10 fF, normal state resistance Rn ≈ 20 Ω and characteristic

voltage IcRn ≈ 800 µV at 77 K [28–31]. The 50 times smaller capacitance of high-Tc JJs when compared to

the capacitance of low-Tc JJs is advantageous for the low noise properties of high-Tc DC SQUIDs based

on high-Tc JJs. In comparison to high-Tc step-edge JJs on SrTiO3 (STO) and LaAlO3 (LAO) substrates,

such buffered 45◦ [100]-tilted step edge JJs on MgO substrates demonstrate better reproducibility and

have lower noise values, also because of the absence of multiple low-angle grain boundaries at the

bottom corner of the step.
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Figure 3. Schematic representation of a step-edge high-Tc Josephson junction developed at FZJ [28–30].

(7.1) Textured MgO substrate with a step height of ~400 nm; (7.2, 7.3) Graphoepitaxial buffer layers;

(7.4) YBCO film; (7.5) Grain boundaries.

Only a few high-Tc SQUIDs can be produced simultaneously on the relatively small single crystal

substrates of STO, LAO and MgO materials that are used for deposition of the epitaxial high-Tc films

and heterostructures. The sensitivity of a high-Tc SQUID is typically improved by using a thin film

pick-up loop that is connected directly to the SQUID loop or inductively coupled to it via a multiturn

input coil. Low noise high-Tc superconducting flux transformers are made from epitaxial films because

of the absence of sufficiently flexible and thin high-Tc superconducting wires. Thin film 20-mm

multilayer superconducting flux transformers based on heterostructures with YBCO films are used to

concentrate magnetic flux into the loop of the high-Tc SQUID to achieve a magnetic field resolution of

~4 fT/
√

Hz at 77 K [25,31]. Further improvements in the magnetic field resolution of flip-chip high-Tc

SQUID magnetometers down to ~2 fT/
√

Hz at 77 K have recently been achieved by using a soft

magnetic flux antenna in addition to the 20-mm multilayer superconducting flux transformer [32].

High-Tc SQUIDs demonstrate low noise properties up to temperatures of ~80 K, which can easily

be reached by cooling using relatively cheap liquid nitrogen or energy-efficient cryocoolers. A wide

variety of high-Tc SQUID sensors have been developed for specific NDE applications. Typically,

they are vacuum-tight-encapsulated in fiberglass capsules together with a heater and feedback coil.

The propensity of YBCO films and MgO substrates to degrade in the presence of humidity or corrosive

contaminants in the air results in the need for vacuum-tight encapsulation or passivation, which is

required for long-term stability of the high-Tc SQUID sensors.

4. Low-Tc and High-Tc SQUID NDE Systems

A wide variety of NDE systems equipped with specific SQUID sensors have been developed to

study objects with different requirements. The measurement of magnetic fields generated by remote

objects in magnetically unshielded environments during nondestructive archeological or geomagnetic

surveys can be performed to a first approximation using room temperature magnetometers such as

fluxgates, induction coils or optically pumped magnetometers. A low-Tc SQUID gives the best results

for apparent resistivity at both shallow and deep regions simultaneously because it covers a larger

response time interval than conventional coils during transient electromagnetic measurements [33],

which require frequency-independent sensitivity at the level of several fT/
√

Hz. During transient

electromagnetic measurements, electromagnetic fields are induced by transient pulses of electric

current through a large loop of wire and the subsequent decay response from currents induced in

underground layers can be measured. As a result of their superior sensitivity at low frequencies, only

SQUID systems are currently able to resolve changes in the electrical conductivity of underground

layers with sufficient sensitivity for depths exceeding ~500 m. Both low-Tc and high-Tc mobile systems

have been demonstrated for the recording of magnetic anomalies during movement of the systems in

the Earth’s magnetic field [3,33–35]. High-Tc SQUID magnetometers or gradiometers with directly
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coupled 8-mm pick-up loops that are inductively coupled to first-order single-layer superconducting

gradiometers, as well as low-Tc SQUID gradiometers with integrated multilayer gradiometric flux

transformers [22], are currently the most suitable low-Tc SQUID sensors for mobile geomagnetic and

archeological NDE.

The nondestructive monitoring of ion beam currents in particle accelerators is performed by the

non-invasive measurement of magnetic fields generated by moving charged elementary particles.

By using a Cryogenic Current Comparator (CCC) based on a low-Tc SQUID with a ferromagnetic

Vitrovac core in the pick-up loop, a resolution of ~6 pA/
√

Hz at 4.2 K and 2 kHz with a system

10-kHz frequency bandwidth has been achieved for monitoring accelerated electrons or 20Ne10+

ions [36]. The sensor part of the CCC was optimized for the lowest possible noise-limited current

resolution, in combination with a high system bandwidth of ~200 kHz, without compromising the

resolution [37]. The ferromagnetic core was made from NANOPERM® with different annealing recipes

by the company MAGNETEC. The fine structure of a beam could be observed. The CCC could

also be used for the calibration of different devices, such as a secondary electron monitor. By using

a ferromagnetic-core-free monitor based on a high-Tc DC SQUID gradiometer with a multilayer flux

transformer operating at 77 K, fabricated at FZJ, the intensity of a 1 µA beam of 132Xe20+ (50 MeV/u)

ions could be measured non-invasively with 100 nA resolution [38].

In “traditional” NDE, high-Tc DC SQUID systems have demonstrated their superior capabilities

for the inspection of metal plates, aircraft wheels and fuselage and pre-stressed concrete

bridges [5,6,39–42]. The chosen measurement scheme depends on the NDE application: an eddy

current excitation scheme and a narrowband lock-in readout scheme are used for the investigation of

metal plates and aircraft parts, while measurements of static magnetic fields are efficient for monitoring

magnetic flux leakage from ferromagnetic objects such as the pre-stressed steel tendons of concrete

bridges. Deeper defects can be detected using SQUIDs at lower excitation frequencies, when compared

to the conventional eddy current technique based on induction coils, because the sensitivity of coils

decreases strongly with frequency.

Figure 4a shows a nonmagnetic ~200 mL cryostat with fiberglass walls that is able to hold liquid

nitrogen for up to ~4 h while operating in different orientations (see Figure 4b). It was held by hand or

fixed on the robotic arm of an automatic scanner during NDE measurements. A high-Tc DC SQUID

first order planar gradiometer produced on a 1 cm2 LAO substrate with a [110] orientation of its edges

was fixed on a sapphire rod in the vacuum part of the cryostat, which was cooled by liquid nitrogen

and placed ~1 mm from the outer surface of the bottom of the cryostat. Such gradiometers are able to

operate in industrial environments, while providing a high sensitivity of ~50 fT/cm
√

Hz at 77 K to the

magnetic field gradient ∂Bz/∂x.

(a) 
 

(b) 

Figure 4. (a) Liquid nitrogen minicryostat used for the operation of a high-Tc DC SQUID gradiometer in

an NDE system. The inset shows a photograph of the directly coupled high-Tc DC SQUID first order

planar gradiometer, which was produced on a 1 cm2 LAO substrate and installed in the cryostat; (b) Scan

of an airplane wheel rim using the high-Tc DC SQUID gradiometer system. The robotic arm scanner

moves the cryostat along the outer surface of the wheel rim, while the wheel is rotated around its axis.
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An interesting application of high-Tc SQUIDs for the NDE of non-magnetic Al pipes involves

the use of a magnetostrictive transmitter and sensor based on the use of pre-magnetized thin Ni

plates to generate ultrasonic waves in the pipes and to convert the ultrasonic waves that are reflected

from defects into magnetic signals, which can be measured contactlessly using a high-Tc SQUID

gradiometer [43,44]. Another prospective application of high-Tc SQUIDs is a multi-channel system

intended for the detection of magnetic metallic contaminants in packaged food [45].

At IRE, a low-Tc DC SQUID-based NDE system for operation in a magnetically unshielded

environment was developed. The measurement probe in this system is based on fiberglass tubes and

consists of the following elements: a first-order axial gradiometer as an input magnetic flux transformer,

the low-Tc DC SQUID sensor CE2blue (a product of Supracon AG) with a low-Tc DC SQUID and input

coil, connecting wires with a LEMO connector and a filling port for liquid He (see Figure 5). Low-Tc

DC SQUID sensors developed at IRE are intended for the replacement of commercial sensors in future

NDE systems.

 

Figure 5. Photograph of a single-channel low-Tc DC SQUID-based gradiometer system with a liquid

He cryostat and a measurement probe. The first-order gradiometer was made of insulated Nb wire

with a diameter of 0.05 mm using a “1:1” configuration (one lower and one upper turn) on a textolite

rod. The diameter of the pick-up loops of the gradiometer is 4 mm and the base line of the gradiometer

is 40 mm. The initial unbalance of the gradiometer is below 1%. The gradiometer ends are fixed

mechanically on the Nb lamella of the SQUID sensor for connection to the SQUID input coil.

The single-channel low-Tc NDE system includes a liquid He cryostat, as shown in Figure 5.

The inner diameter of the neck and inner tail of the cryostat is 22 mm. The distance between the
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outer and inner surfaces in the tail in the cooled system is no greater than 10 mm. The working time

of the cryostat, which is cooled by 1.2 L of liquid He, is more than 2 days. The parameters of the

liquid helium cryostat are as follows: outer diameter 110 mm; length 500 mm; outer diameter of the

tail 45 mm; outer length of the tail 85 mm; inner diameter of the neck 22 mm; inner diameter of the

cryogenic volume 80 mm; weight of the empty cryostat 2.2 kg. As the cryostat volume is relatively

small, the filling procedure is relatively simple and takes several minutes. The small volume of He

and the presence of a relief valve result in safety of the cryostat if the vacuum conditions in the space

between the inner and outer walls are violated.

In tests of the gradiometer in such a configuration, the transfer coefficient of the input magnetic

field Bin into magnetic flux Φe in the SQUID was measured to be ~9.5 nT/Φ0, corresponding to

an equivalent sensitivity of the gradiometer with respect to the magnetic field of ~30 fT/
√

Hz at

a SQUID intrinsic noise level of 3 µΦ0/
√

Hz. Such a sensitivity is sufficient for applications of

SQUID-based gradiometers in NDE systems.

The DC SQUID electronics of the NDE system prototype are mounted on an Al box of size

117 mm × 62 mm × 19 mm located close to the cryostat and connected to the measurement

probe using a cable of length 70 cm. The low-Tc DC SQUID electronics contain analog and digital

components. The analog part contains a conventional modulation circuit of a null detector and a circuit

of negative feedback with respect to magnetic flux. The analog components allow tuning of the low-Tc

DC SQUID operating parameters. The digital components make it possible to switch the tuning

and working regimes of the low-Tc DC SQUID gradiometer and system control using a personal

computer. The low-Tc DC SQUID electronics are connected to the control unit by a 5-m-long cable.

The preamplifier of the electronics unit is based on a Toshiba K-369 low-noise field effect transistor

(FET) in the cascade circuit. The intrinsic noise of the preamplifier, without a transformer between the

SQUID and the transistor, is <0.7 nV/
√

Hz. The transformer improves this value by approximately

a factor of 10.

A single-pole integrator generates a feedback signal, which is fed to the modulation coil

via a feedback resistor. The voltage across the feedback resistor is used as the output signal of

the gradiometer. The DC SQUID electronics operate at a fixed feedback coefficient of ~1 V/Φ0.

The bandwidth of the system is approximately 0–16 kHz. The control unit of the NDE system contains

stabilized power supply sources and a data acquisition system based on a 24-bit ADC.

The elements described above were used to construct a working prototype of a DC SQUID-based

gradiometer. The prototype was tested under laboratory conditions without additional magnetic

shielding and the main working parameters were studied. The Stanford Research low-frequency

spectrum analyzer was used to study the noise characteristics of the output signal of the DC

SQUID-based gradiometer prototype.

Noise spectra were registered over a frequency interval of 1–1000 Hz at a feedback coefficient of

KFB = 1 V/Φ0. The measured transfer coefficient of the external magnetic field into the magnetic flux

in the SQUID of ~9.5 nT/Φ0 corresponds to an equivalent noise level with respect to the magnetic field

of ~30 fT/
√

Hz. Such noise levels of the DC SQUID-based gradiometer indicate sufficient balancing

and confirm that such devices can be employed in NDE systems. DC SQUID-based gradiometers can

be used to develop multichannel DC SQUID-based systems. The prototype of the single-channel DC

SQUID-based gradiometer shows stable operation in unshielded laboratory conditions and can be

used for the development of multichannel gradiometric DC SQUID-based systems for the NDE of

defects in metal structures and materials.

One of the important elements of a SQUID-based NDE system is the XY-scanner used to scan

samples under a stationary liquid helium cryostat. The developed XY-scanner was equipped with

two computer-controlled stepper motors (5RK60GE-CW2TE, ORIENTAL MOTOR), in order to move

samples in the X and Y directions. The scanned area was 300 × 300 mm, with an accuracy for

sample positioning of ~0.3 mm. In order to avoid external magnetic noise from magnetic components,
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the sample holder was fabricated using non-metallic and non-magnetic materials, such as fiberglass

and plexiglass.

5. High-Tc SQUID Microscope System with a Ferromagnetic Flux Antenna for NDE

A scanning SQUID microscope (SSM) is a powerful noninvasive tool for fundamental and applied

research (see for example [2,46,47] and references therein). The high-Tc DC SQUID microscope

developed at FZJ for studies of room temperature objects is based on a high-Tc DC SQUID with

a magnetic flux antenna and was described in detail in our previous publications [48–50] (see Figure 6).

Here, we review it briefly, report new results obtained with the system and provide an outlook for

further developments.

The principle of operation of the microscope is shown in Figure 6b. An amorphous metallic soft

magnetic 25 µm thick foil Vitrovac 6025X (Vacuumschmelze GmbH, Hanau, Germany) was used to

guide magnetic flux from an object at room temperature through the pick-up loop of the high-Tc SQUID

and to return the flux back to the object. 2-mm-wide stripes were cut using scissors in a direction

normal to the rolling direction of the foil, in order to reduce Barkhausen noise from the ferromagnetic

foil. The tip of the flux antenna was first formed at a 50◦ angle using scissors and the end of the tip

was then sharpened to a radius of ~200 nm using 0.3 µm diamond polishing sheets.

(a) (b) 

Figure 6. (a) Photograph of a high-Tc DC SQUID microscope with a fiberglass cryostat that can support

0.8 L of liquid nitrogen; (b) Schematic diagram of a high-Tc DC SQUID with a magnetic flux antenna

made of soft magnetic foil penetrating the directly coupled pick-up loop [49].

The SQUID was fixed using vacuum grease on a sapphire rod together with the modulation coil

and the low temperature part of the flux antenna (see Figure 7a) in the vacuum part of the cryostat.

The sapphire rod was cooled using liquid nitrogen through the inner wall of the fiberglass cryostat.

The cryostat contains ~0.8 L of liquid nitrogen when it is completely filled and provides 2 days of

SQUID operation at a temperature of ~78 K. The room temperature parts of the flux antenna were

vacuum-sealed using epoxy in the outer wall of the cryostat and connected to their cooled counterparts

(see Figure 7b). Commercial ac-bias electronics was used for SQUID operation in flux-locked loop

mode (Cryoton Co. Ltd., Moscow, Russia).
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(a) (b) 

Figure 7. (a) Photograph of a high-Tc DC SQUID (1) assembled on a sapphire rod, showing parts of the

magnetic flux antenna (2) and the modulation coil (3) on ferromagnetic wires (4); (b) Sketch of a DC

SQUID with a directly coupled pick-up loop assembled together with low temperature (1) and room

temperature (2) parts of the flux antenna.

This system was used to perform measurements of the magnetic field distribution over a US

$1 bill, for a qualitative comparison of the device with SQUID microscope systems made by other

groups [51,52]. The magnetic signal originates from the black ink used for printing banknotes, which

contains a small quantity of magnetite (Fe3O4) nanoparticles. The measurements were nondestructive.

Such a system can also be used for the detection of magnetic ink on old bills, which can result in false

alarm signals in the detection of counterfeit notes using conventional magnetic ink testers.

The nondestructive evaluation of magnetic features in stainless steel X5CrNi18-10 (German

grade 1.4301, AISI 304) samples caused by welding and wear-out was performed. Although this

corrosion-resisting austenitic steel is not magnetic, heat treatment or wear [53] partially transform

non-magnetic austenite to ferromagnetic ά-martensite that is brittle and less resistant to corrosion.

The detection of magnetic signals at weld seams provides valuable information about the quality

of the welding. An example of a magnetic image of a weld seam made by laser welding of 1.4301

stainless steel plates is shown in Figure 8. The magnetic signal measured along such a weld seam is

relatively weak compared to the more than 10 times stronger magnetic field above seams made using

wolfram-inert-gas (WIG) welding of the same steel plates.

 

Figure 8. 3D color-scale image of the magnetic field distribution measured over a weld seam (indicated

by a black line) made by laser welding. The range of color-scale values is from −100 nT (blue) to 100

nT (red). The scanned area is 30 mm × 10 mm.
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The wear-out of stainless steel plates was simulated by scratching [50] the plates using a diamond

tip or engraving by a diamond drill. The measured magnetic signal originates from inclusions of

the ferromagnetic ά-martensite form of the steel crystalline structure, which appear as a result of the

plastic deformation of austenite in the contact area due to tribological stressing [53].

A SQUID microscope has been used for the investigation of the magnetization states of thin

magnetic films and heterostructures intended for magneto-electronic devices and recording media.

Bit patterns of information stored ferromagnetically on old floppy disks and hard disks have

been evaluated. Changes in the distributions of magnetic stray fields in the Co/Al2O3/Co-tunnel

junctions of tunneling magneto-resistive devices during their magnetization have been measured.

The dependence of magnetic domain structure in thin Fe films on the thicknesses of (SiGe)n barrier

layers between them has been reported [54]. Magnetic stray fields originating from 30-nm-thick

Co films fabricated using electron beam lithography on 50-nm-thick SiN membranes have been

registered [50]. A measurement of the latter structure after demagnetization is shown in Figure 9.

Measurements of stray magnetic fields using a SQUID microscope were performed in the frequency

range 1–10 Hz and did not result in observable changes in magnetization.

 

Figure 9. Magnetic field distribution of the demagnetized state of a 30-nm-thick Co film (contours

showing the Co pattern have been added to the picture) prepared on a 50-nm-thick SiN membrane.

The color scale represents magnetic fields of between −10 nT (blue) and 10 nT (red). Signals recorded

from the magnetic domain structure of 40 µm, 30 µm and 20 µm dots are observable.

The spatial resolution of the SQUID microscope of ~10 µm was limited primarily by the shape

of the ferromagnetic tip of the magnetic flux antenna and the tip-to-sample separation. Additional

sharpening of the tip by focused ion beam milling and the implementation of a tuning fork for

controlling the tip-to-sample distance would improve the spatial resolution. The resulting thinning
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of the tip would deteriorate the magnetic field sensitivity. A possible solution involves optimization

of the shape and material of the magnetic flux antenna. For example, Nanoperm M033 may result in

better magnetic field sensitivity of the sensor [55].

Replacement of the direct-coupled pick-up loop by a multilayer flux transformer improves transfer

of the magnetic flux from the pick-up loop to the loop of the high-Tc DC SQUID (see [56] and references

therein). For a 20-mm flip-chip magnetometric high-Tc SQUID sensor, a magnetic field resolution of

~4 fT/
√

Hz at 77 K was measured in magnetically shielded conditions [25,31]. This sensitivity was

further improved to 2 fT/
√

Hz at 77 K by using an extremely soft magnetic flux antenna made from

ferromagnetic Vitrovac 6025 foil [32]. In order to provide low values of Barkhausen and Johnson noise

of the sensor, the magnetic flux antenna was assembled from ~250 pieces of 2-mm-wide 3.5-cm-long

strips, which were cut in a direction perpendicular to the rolling direction of the foil and insulated

on both sides by ~200-nm-thick insulating Al2O3 film. An example of noise measurement of the

20-mm flip-chip magnetometric high-Tc SQUID sensor with such a soft magnetic flux antenna in

a magnetic shield is shown in Figure 10. The 20 mm sensors were initially developed for human

magnetoencephalography [57] and other noninvasive noncontact investigations of biological objects.

A composite ferromagnetic antenna can be prolonged through the walls of the cryostat in the future

to measure the strongest component of the magnetic field in the nearest vicinity of the object under

investigation. The combination of a superconducting flux transformer with a ferromagnetic flux

antenna will also be useful for other NDE applications, such as improving the magnetic field resolution

of a SQUID microscope or continuous non-invasive current monitoring of a high energy ion beam in

a particle accelerator using a high-Tc SQUID sensor operating at temperature of up to 80 K.

Figure 10. Noise spectra of a 20 mm high-Tc DC SQUID magnetometer measured at 77 K in

a magnetic shield: (a) without a ferromagnetic antenna and (b) with a ferromagnetic antenna. The inset

shows a measurement of human magnetoencephalography performed using a high-Tc DC SQUID

magnetometer that has a sensitivity in the femto-Tesla range at low frequencies.
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Low-Tc DC SQUIDs with sizes of below 1 µm (“nanoSQUIDs”) have been fabricated on sharp tips

of pulled quartz tubes and have demonstrated unprecedented spin sensitivities of ~0.38 µB/
√

Hz [58]

with spatial resolutions of ~20 nm [2]. The implementation of an electrically tunable multi-terminal

SQUID configuration [59] provided optimal flux bias conditions by the direct injection of flux

modulation and feedback current into the SQUID loop, thereby avoiding the need for the application

of bias fields as high as ~0.4 T in the case of a 40-nm loop of a nanoSQUID. Such nanoSQUIDs

can potentially be used for the nondestructive measurement of distributions of stray fields of

magnetic nanoparticles and nanostructures, as well as for the nondestructive readout of the final

states of superconducting flux qubits after their protection by sufficiently high potential barriers.

The self-biasing of SQUIDs using YBCO-Nb JJs has also been realized [60]. NanoSQUIDs based on

YBCO films and step-edge or bicrystal JJs should be able to operate at liquid nitrogen temperature or

have a large IcRn product at lower temperatures [27,61].
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