000841130 001__ 841130
000841130 005__ 20240712112832.0
000841130 0247_ $$2doi$$a10.1016/j.jpowsour.2017.10.030
000841130 0247_ $$2ISSN$$a0378-7753
000841130 0247_ $$2ISSN$$a1873-2755
000841130 0247_ $$2WOS$$aWOS:000418392000022
000841130 037__ $$aFZJ-2017-08230
000841130 041__ $$aEnglish
000841130 082__ $$a620
000841130 1001_ $$00000-0002-9820-1569$$aNishida, R. T.$$b0
000841130 245__ $$aThree-dimensional computational fluid dynamics modelling and experimental validation of the Jülich Mark-F solid oxide fuel cell stack
000841130 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000841130 3367_ $$2DRIVER$$aarticle
000841130 3367_ $$2DataCite$$aOutput Types/Journal article
000841130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548141022_13649
000841130 3367_ $$2BibTeX$$aARTICLE
000841130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841130 3367_ $$00$$2EndNote$$aJournal Article
000841130 520__ $$aThis work is among the first where the results of an extensive experimental research programme are compared to performance calculations of a comprehensive computational fluid dynamics model for a solid oxide fuel cell stack. The model, which combines electrochemical reactions with momentum, heat, and mass transport, is used to obtain results for an established industrial-scale fuel cell stack design with complex manifolds. To validate the model, comparisons with experimentally gathered voltage and temperature data are made for the Jülich Mark-F, 18-cell stack operating in a test furnace. Good agreement is obtained between the model and experiment results for cell voltages and temperature distributions, confirming the validity of the computational methodology for stack design. The transient effects during ramp up of current in the experiment may explain a lower average voltage than model predictions for the power curve.
000841130 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000841130 588__ $$aDataset connected to CrossRef
000841130 7001_ $$0P:(DE-Juel1)157835$$aBeale, S. B.$$b1$$eCorresponding author
000841130 7001_ $$0P:(DE-HGF)0$$aPharoah, J. G.$$b2
000841130 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L.G.J.$$b3$$ufzj
000841130 7001_ $$0P:(DE-Juel1)129828$$aBlum, L.$$b4
000841130 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.10.030$$gVol. 373, p. 203 - 210$$p203 - 210$$tJournal of power sources$$v373$$x0378-7753$$y2018
000841130 8564_ $$uhttps://juser.fz-juelich.de/record/841130/files/1-s2.0-S0378775317313629-main.pdf$$yRestricted
000841130 8564_ $$uhttps://juser.fz-juelich.de/record/841130/files/1-s2.0-S0378775317313629-main.gif?subformat=icon$$xicon$$yRestricted
000841130 8564_ $$uhttps://juser.fz-juelich.de/record/841130/files/1-s2.0-S0378775317313629-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841130 8564_ $$uhttps://juser.fz-juelich.de/record/841130/files/1-s2.0-S0378775317313629-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841130 8564_ $$uhttps://juser.fz-juelich.de/record/841130/files/1-s2.0-S0378775317313629-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841130 8564_ $$uhttps://juser.fz-juelich.de/record/841130/files/1-s2.0-S0378775317313629-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841130 909CO $$ooai:juser.fz-juelich.de:841130$$pVDB
000841130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b1$$kFZJ
000841130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b3$$kFZJ
000841130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b4$$kFZJ
000841130 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000841130 9141_ $$y2018
000841130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000841130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841130 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841130 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841130 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841130 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841130 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841130 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841130 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841130 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000841130 920__ $$lyes
000841130 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000841130 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x1
000841130 980__ $$ajournal
000841130 980__ $$aVDB
000841130 980__ $$aI:(DE-Juel1)IEK-9-20110218
000841130 980__ $$aI:(DE-Juel1)IEK-3-20101013
000841130 980__ $$aUNRESTRICTED
000841130 981__ $$aI:(DE-Juel1)IET-1-20110218
000841130 981__ $$aI:(DE-Juel1)ICE-2-20101013
000841130 981__ $$aI:(DE-Juel1)IET-1-20110218