| Hauptseite > Publikationsdatenbank > Modeling the degradation mechanisms of C$_{6}$/LiFePO$_{4}$ batteries > print |
| 001 | 841135 | ||
| 005 | 20240712112832.0 | ||
| 024 | 7 | _ | |a 10.1016/j.jpowsour.2017.11.049 |2 doi |
| 024 | 7 | _ | |a 0378-7753 |2 ISSN |
| 024 | 7 | _ | |a 1873-2755 |2 ISSN |
| 024 | 7 | _ | |a WOS:000418463700014 |2 WOS |
| 037 | _ | _ | |a FZJ-2017-08235 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Li, Dongjiang |0 P:(DE-Juel1)173718 |b 0 |u fzj |
| 245 | _ | _ | |a Modeling the degradation mechanisms of C$_{6}$/LiFePO$_{4}$ batteries |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2018 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1513062158_1944 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a A fundamental electrochemical model is developed, describing the capacity fade of C$_{6}$/LiFePO$_{4}$ batteries as a function of calendar time and cycling conditions. At moderate temperatures the capacity losses are mainly attributed to Li immobilization in Solid-Electrolyte-Interface (SEI) layers at the anode surface. The SEI formation model presumes the availability of an outer and inner SEI layers. Electron tunneling through the inner SEI layer is regarded as the rate-determining step. The model also includes high temperature degradation. At elevated temperatures, iron dissolution from the positive electrode and the subsequent metal sedimentation on the negative electrode influence the capacity loss. The SEI formation on the metal-covered graphite surface is faster than the conventional SEI formation. The model predicts that capacity fade during storage is lower than during cycling due to the generation of SEI cracks induced by the volumetric changes during (dis)charging. The model has been validated by cycling and calendar aging experiments and shows that the capacity loss during storage depends on the storage time, the State-of-Charge (SoC), and temperature. The capacity losses during cycling depend on the cycling current, cycling time, temperature and cycle number. All these dependencies can be explained by the single model presented in this paper. |
| 536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Danilov, Dmitri |0 P:(DE-Juel1)173719 |b 1 |u fzj |
| 700 | 1 | _ | |a Zwikirsch, Barbara |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Fichtner, Maximilian |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Yang, Yong |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 5 |u fzj |
| 700 | 1 | _ | |a Notten, Peter H. L. |0 P:(DE-Juel1)165918 |b 6 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1016/j.jpowsour.2017.11.049 |g Vol. 375, p. 106 - 117 |0 PERI:(DE-600)1491915-1 |p 106 - 117 |t Journal of power sources |v 375 |y 2018 |x 0378-7753 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:841135 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173718 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)173719 |
| 910 | 1 | _ | |a Eindhoven University of Technology |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)173719 |
| 910 | 1 | _ | |a Helmholtz Institute Ulm HIU |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Helmholtz Institute Ulm HIU |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Xiamen University |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)165918 |
| 910 | 1 | _ | |a Eindhoven University of Technology |0 I:(DE-HGF)0 |b 6 |6 P:(DE-Juel1)165918 |
| 913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2015 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|