001     841135
005     20240712112832.0
024 7 _ |a 10.1016/j.jpowsour.2017.11.049
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000418463700014
|2 WOS
037 _ _ |a FZJ-2017-08235
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Li, Dongjiang
|0 P:(DE-Juel1)173718
|b 0
|u fzj
245 _ _ |a Modeling the degradation mechanisms of C$_{6}$/LiFePO$_{4}$ batteries
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1513062158_1944
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A fundamental electrochemical model is developed, describing the capacity fade of C$_{6}$/LiFePO$_{4}$ batteries as a function of calendar time and cycling conditions. At moderate temperatures the capacity losses are mainly attributed to Li immobilization in Solid-Electrolyte-Interface (SEI) layers at the anode surface. The SEI formation model presumes the availability of an outer and inner SEI layers. Electron tunneling through the inner SEI layer is regarded as the rate-determining step. The model also includes high temperature degradation. At elevated temperatures, iron dissolution from the positive electrode and the subsequent metal sedimentation on the negative electrode influence the capacity loss. The SEI formation on the metal-covered graphite surface is faster than the conventional SEI formation. The model predicts that capacity fade during storage is lower than during cycling due to the generation of SEI cracks induced by the volumetric changes during (dis)charging. The model has been validated by cycling and calendar aging experiments and shows that the capacity loss during storage depends on the storage time, the State-of-Charge (SoC), and temperature. The capacity losses during cycling depend on the cycling current, cycling time, temperature and cycle number. All these dependencies can be explained by the single model presented in this paper.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 1
|u fzj
700 1 _ |a Zwikirsch, Barbara
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fichtner, Maximilian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yang, Yong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
|u fzj
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2017.11.049
|g Vol. 375, p. 106 - 117
|0 PERI:(DE-600)1491915-1
|p 106 - 117
|t Journal of power sources
|v 375
|y 2018
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841135/files/1-s2.0-S0378775317315161-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841135
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173719
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)173719
910 1 _ |a Helmholtz Institute Ulm HIU
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Helmholtz Institute Ulm HIU
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Xiamen University
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165918
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21