001     841197
005     20210129231935.0
024 7 _ |a 10.1016/j.neuroimage.2016.10.044
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a pmid:27989843
|2 pmid
024 7 _ |a WOS:000394560700051
|2 WOS
024 7 _ |a 2128/21474
|2 Handle
024 7 _ |a altmetric:13226281
|2 altmetric
037 _ _ |a FZJ-2017-08290
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Senden, Mario
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior
260 _ _ |a Orlando, Fla.
|c 2017
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548848324_26602
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cognition is hypothesized to require the globally coordinated, functionally relevant integration of otherwise segregated information processing carried out by specialized brain regions. Studies of the macroscopic connectome as well as recent neuroimaging and neuromodeling research have suggested a densely connected collective of cortical hubs, termed the rich club, to provide a central workspace for such integration. In order for rich club regions to fulfill this role they must dispose of a dynamic mechanism by which they can actively shape networks of brain regions whose information processing needs to be integrated. A potential candidate for such a mechanism comes in the form of oscillations which might be employed to establish communication channels among relevant brain regions. We explore this possibility using an integrative approach combining whole-brain computational modeling with neuroimaging, wherein we investigate the local dynamics model brain regions need to exhibit in order to fit (dynamic) network behavior empirically observed for resting as well as a range of task states. We find that rich club regions largely exhibit oscillations during task performance but not during rest. Furthermore, oscillations exhibited by rich club regions can harmonize a set of asynchronous brain regions thus supporting functional coupling among them. These findings are in line with the hypothesis that the rich club can actively shape integration using oscillations.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reuter, Niels
|0 P:(DE-Juel1)170074
|b 1
|u fzj
700 1 _ |a van den Heuvel, Martijn P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Goebel, Rainer
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Deco, Gustavo
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.neuroimage.2016.10.044
|g Vol. 146, p. 561 - 574
|0 PERI:(DE-600)1471418-8
|p 561 - 574
|t NeuroImage
|v 146
|y 2017
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/841197/files/1-s2.0-S1053811916306000-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/841197/files/1-s2.0-S1053811916306000-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/841197/files/1-s2.0-S1053811916306000-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/841197/files/1-s2.0-S1053811916306000-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/841197/files/1-s2.0-S1053811916306000-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/841197/files/1-s2.0-S1053811916306000-main.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841197/files/Senden_2017.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841197/files/Senden_Reuter_2017.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841197/files/Senden_2017.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841197/files/Senden_Reuter_2017.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:841197
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)170074
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21