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Abstract 

Cognition is hypothesized to require the globally coordinated, functionally relevant 

integration of otherwise segregated information processing carried out by specialized brain 

regions. Studies of the macroscopic connectome as well as recent neuroimaging and 

neuromodeling research have suggested a densely connected collective of cortical hubs, 

termed the rich club, to provide a central workspace for such integration. In order for rich club 

regions to fulfill this role they must dispose of a dynamic mechanism by which they can 

actively shape networks of brain regions whose information processing needs to be integrated. 

A potential candidate for such a mechanism comes in the form of oscillations which might be 

employed to establish communication channels among relevant brain regions. We explore this 

possibility using an integrative approach combining whole-brain computational modeling 

with neuroimaging, wherein we investigate the local dynamics model brain regions need to 

exhibit in order to fit (dynamic) network behavior empirically observed for resting as well as 

a range of task states. We find that rich club regions largely exhibit oscillations during task 

performance but not during rest. Furthermore, oscillations exhibited by rich club regions can 

harmonize a set of asynchronous brain regions thus supporting functional coupling among 

them. These findings are in line with the hypothesis that the rich club can actively shape 

integration using oscillations. 
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Introduction 

The human brain is characterized by a high degree of structural segregation allowing 

for designated information processing within specialized brain regions (Bear, Connors, & 

Paradiso, 2006; Flourens, 1842; Lashley, 1929). While this is beneficial for unimodal and 

automatic processing, higher cognition is hypothesized to require the globally coordinated 

integration of segregated brain regions into temporal functional networks (Baars, 2005; Deco, 

Jirsa, & McIntosh, 2011; Dehaene & Naccache, 2001; Ghosh, Rho, McIntosh, Kötter, & Jirsa, 

2008). A high degree of integration is thus additionally required for efficient information 

processing (Damasio, 1989; Tononi, 2004). Studies of human, macaque, and other mammal 

cortices have shown the presence of a hierarchically higher module termed the rich club 

which is characterized by hubs with dense intra- and inter-modular connectivity (Colizza, 

Flammini, Serrano, & Vespignani, 2006;van den Heuvel & Sporns, 2011; Zamora-López, 

Zhou, & Kurths, 2009). The rich club forms a structural backbone mediating a majority of all 

anatomical paths between pairs of brain regions (van den Heuvel, Kahn, Goñi, & Sporns, 

2012; Zamora-López et al., 2009), suggesting a prominent role for it in functional integration. 

In accordance with this, recent functional magnetic resonance imaging (fMRI) studies 

have shown that cortical hubs carry traces of blood oxygen-level dependent (BOLD) activity 

of resting- and task related functional networks (Braga, Sharp, Leeson, Wise, & Leech, 2013; 

Leech, Braga, & Sharp, 2012), indicative of communication among brain regions being 

mediated by rich club regions. fMRI research has further shown that cortical hubs update their 

pattern of global functional connectivity in response to changing task demands (Cole et al., 

2013). Additionally, simulation studies employing a steady-state attractor model have 

suggested that cortical hubs, and specifically the rich club, may allow the brain to sustain a 

large functional repertoire characterized by diverse configurations of peripheral, i.e. low 

degree, regions around a stable high-degree core (Deco, Senden, & Jirsa, 2012; Senden, Deco, 

de Reus, Goebel, & van den Heuvel, 2014). Similar observations have been made in studies 

using oscillatory neural mass models showing that the rich club can facilitate the 

synchronization among groups of cortical regions (Gollo, Zalesky, Hutchison, van den 

Heuvel, & Breakspear, 2015; Schmidt, LaFleur, de Reus, van den Berg, & van den Heuvel, 

2015). The latter is especially interesting given that cortical regions can undergo transitions 

from asynchronous to oscillatory behavior as a result of interactions between cortical and 

thalamic neuronal populations in the presence of noise (Breakspear et al., 2006). 
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These findings suggest that rich club regions may utilize oscillations as a local control 

mechanism to organize brain regions into functional networks as they dynamically adjust their 

oscillatory behavior in response to changing task demands. Furthermore, if rich club regions 

are generally involved in functional integration, these adjustments should occur irrespective 

of cognitive domain. The aim of the present study is to investigate this possibility by 

combining fMRI measurements of resting and task states with simulations of a whole-brain 

model whose cortical regions can exhibit local dynamics ranging from asynchronous 

fluctuations (noise diffusion) to structured oscillations. We restrict our investigations to 

oscillations falling within the infraslow frequency band (defined as the range from .01 Hz to 

.2 Hz; Vanhatalo et al., 2004) due to the slow nature of the BOLD signal. These oscillations 

might be a proxy for low-pass filtered oscillatory behavior at higher frequency 

bands. However, prior research suggests that the infraslow frequency band might also be 

relevant for functional network formation in its own right since oscillatory behavior in this 

band has been shown to modulate regions’ excitability states and has been implicated in 

resting state and task execution (Hiltunen et al., 2014; Monto, Palva, Voipio, & Palva, 2008; 

Vanhatalo et al., 2004). To study the relevance of local oscillatory behavior for whole-brain 

dynamics related to cognition irrespective of a specific cognitive domain, we obtained fMRI 

data for a range of tasks, including an n-Back task (Kirchner, 1958), the Eriksen Flanker task 

(Eriksen & Eriksen, 1974), a mental rotation task (Shepard & Metzler, 1971), and a verbal 

odd-man-out task (Flowers & Robertson, 1985). These tasks were chosen to tap into working 

memory, executive function and inhibition, mental rotation, and semantic reasoning, 

respectively. These cognitive domains are conceptually different and their associated 

functional connectivity profiles have been shown to be minimally overlapping (Smith et al., 

2009). The combined simulation and fMRI approach allows us to investigate the local 

dynamics of rich club regions as opposed to other cortical regions, whether rich club regions 

adapt their local dynamics in response to task performance as compared to rest, and how this 

relates to whole-brain functional coupling. 

Materials and Methods 

Participants 

Fourteen healthy subjects (8 females, age range = 22-43 years, mean age = 28.76 

years) were recruited for resting state and task related fMRI measurements. All subjects had 
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normal or corrected-to-normal visual acuity, were screened, and provided written informed 

consent prior to scanning. 

Task and Stimulus Description 

 In the present study subjects underwent six functional runs. These runs consisted of a 

resting-state measurement, four individual task measurements including an n-Back (n=2) task 

(Kirchner, 1958), the Eriksen Flanker task (Eriksen & Eriksen, 1974), a mental rotation task 

(Shepard & Metzler, 1971), an odd-man-out task (Flowers & Robertson, 1985), and a task-

switching paradigm wherein participants repeatedly performed each of the four tasks. Using 

the cognitive atlas (http://www.cognitiveatlas.org; Poldrack et al., 2011), tasks were selected 

based on how well they reflect a specific cognitive domain. The cognitive domains (working 

memory, executive function & inhibition, mental rotation, and semantic reasoning), in turn, 

were chosen because they show distinctive patterns of mapping to the ten primary resting-

state functional networks (Smith et al., 2009). All resting-state measurements preceded task-

related measurements to prevent carry-over effects (Grigg & Grady, 2010). Resting-state runs 

lasted for 8 minutes during which subjects were instructed to close their eyes. The four 

individual task runs followed rest, lasted ~ 7 minutes each, and were counter-balanced across 

participants. The task-switching run lasted 9 minutes and was always performed last to allow 

participants to get familiar with performing each task in the scanner before being required to 

switch between them. Since this run was not the object of the present study it will not be 

discussed further. Descriptions of the remaining four tasks are as follows: 

N-back Task. In a visual 2-back task subjects were presented with a sequence of 

abstract shape stimuli and instructed to indicate whether the currently presented stimulus 

matches the second to last stimulus in the sequence presented before. Abstract, snowflake-

like, shapes were used in order to prevent subjects from translating a visual into a verbal 

representation and thus minimizing representational overlap with the verbal odd-man-out task. 

A total of 9 different snowflake-like shapes were shown in a quasi-random order. Shape 

presentation trials lasted for 1 second followed by a 1 second inter-trial interval. In total there 

were 192 trials forming a single task block preceded and followed by a 16 second rest period 

leading to a total run length of 416 seconds. Of the 192 trials 48 (25%) required a response 

indicating a match.   

Flanker Task. In a modified version of the Eriksen Flanker task (Eriksen & Eriksen, 

1974) subjects were presented with three rows of arrow stimuli pointing either to the right or 

the left. The center arrow was the target stimulus indicating whether a left or right response 

http://www.cognitiveatlas.org/
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was required. The arrows surrounding the target stimulus were distractors whose direction 

was either congruent or incongruent with that of the target stimulus. Trials lasted for 1 second 

followed by a 1 second inter-trial interval. In total there were 192 trials forming a single task 

block preceded and followed by a 16 second rest period leading to a total run length of 416 

seconds. Of the 192 trials 96 (50%) were incongruent thus requiring response inhibition. 

3D Mental Rotation Task. In a mental rotation task subjects were required to mentally 

rotate a three-dimensional probe stimulus in order to confirm or deny an identity match with a 

target stimulus. Subjects could indicate a match between the two by pressing the ‘right’ button 

and a mismatch by pressing the ‘left’ button. Trials lasted for 3 seconds followed by a 1 

second inter-trial interval. In total there were 96 trials forming a single task block preceded 

and followed by a 16 second rest period leading to a total run length of 416 seconds. Of the 96 

trials 24 (25%) presented matching probe and target stimuli. 

Odd-Man-Out Task. In a verbal odd-man-out task subjects were presented with three 

words and had to indicate which of the three semantically fits least with the others. The word 

being the odd-man-out in a specific trial was always either presented on the outer left or the 

outer right with the middle word forming a semantic anchor. Hence, the required response 

was a ‘left’ or ‘right’ button press, if the odd-man-out was presented on the left or the right of 

the anchor, respectively. Trials lasted for 3 seconds followed by a 1 second inter-trial interval. 

In total there were 96 trials forming a single task block preceded and followed by a 16 second 

rest period leading to a total run length of 416 seconds.  

Stimulus Presentation 

All tasks were programmed in Presentation® (Version 10; www.neurobs.com). 

Stimuli were presented to the subjects at a resolution of 1920x1200 pixels. All experiments 

were performed on a hardware configuration containing a Dell Optiplex 970 computer with a 

NVIDIA NVS 300 graphics card with OpenGL >2.0 support connected to a Panasonic PT 

EZ570E wuxga projector. The projected stimuli were first reflected off a mirror positioned 

behind the bore of the magnet before they were reflected off a second mirror located above 

the head coil. The projection pathway together with the scanner table positioning created a 

fixed maximum visual angle of 18.76° for all subjects. 

Magnetic resonance imaging 

Images were acquired at Maastricht Brain Imaging Centre (Maastricht University) on a 

3T scanner (Tim Trio/upgraded to Prisma Fit, Siemens Healthcare, Germany). Anatomical 

http://www.neurobs.com/
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data were collected prior to functional data with a T1-weighted MPRAGE imaging sequence 

(192 sagittal slices; Repetition Time [TR] = 2250 ms; Echo Time [TE] = 2.21 ms; Flip Angle 

[FA] = 9°; Field of View [FoV] = 256 x 256 mm2; 1 mm isotropic resolution. Functional 

images were acquired using a gradient-echo echo-planar imaging sequence (38 transversal 

slices; TR = 2000 ms; TE = 30 ms; FA = 77°; FoV = 216 x 216 mm2; voxel-size = 3 x 3 x 3.5 

mm³; no slice gap; GRAPPA = 3). 

Processing of (f)MRI data 

Anatomical images were automatically processed with the longitudinal stream in 

FreeSurfer (Reuter et al., 2012; http://surfer.nmr.mgh.harvard.edu/) including probabilistic 

atlas based cortical parcellation according to the Desikan-Killany (DK) atlas (Desikan, 

Segonne et al. 2006). Initial preprocessing of each functional dataset was performed in 

BrainVoyager QX (v2.6; Brain Innovation, Maastricht, the Netherlands) and included slice 

scan time correction, (rigid body) motion correction, and high-pass filtering with a frequency 

cutoff of .01 Hz. Due to the use of preparation scans, none of the initial volumes needed to be 

discarded related to T1 equilibrium effects. Subsequently, functional images were registered 

to the subject's anatomical images. Using MATLAB (2013a, The MathWorks,Natick, MA), 

signals were then cleaned further by performing wavelet despiking (Patel & Bullmore, 2015) 

and regressing out a global noise signal given by the first principal component of signals 

observed within the cerebrospinal fluid of the ventricles. Next, voxels were uniquely assigned 

to one of 68 cortical regions and an average BOLD signal for each region was computed as 

the mean time-series over all voxels of that region. Finally, since the initial and final 8 data 

points of all task runs constitute a rest-period, these data points were removed leaving 192 

data points during which a task was continuously performed. For reasons of comparability, 

resting state BOLD signal was equally reduced to 192 data points. However, all analyses and 

simulations were repeated with the full resting state data set and did not produce different 

results.  

Structural Connectivity 

High-quality diffusion-weighted MRI data of 215 subjects was obtained from the 

human connectome project’s (HCP) Q3 release (Glasser et al., 2013; Van Essen et al., 2012). 

White matter fibers were traced for each subject using generalized q-sampling imaging (GQI) 

and streamline tractography (Yeh, Wedeen, & Tseng, 2010) and the cortex was parcellated 

into 68 cortical regions based on the DK atlas (Desikan, Segonne et al. 2006). More details on 

these processing steps can be found elsewhere (de Reus & van den Heuvel, 2014). A weighted 

http://surfer.nmr.mgh.harvard.edu/
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structural connectivity matrix was then generated by averaging streamlines over subjects, 

keeping only those entries which had positive values for at least 60% of subjects (de Reus & 

van den Heuvel, 2013), and resampling the data to follow a Gaussian distribution with a mean 

of .5 and a standard deviation of .15 (Honey et al., 2009). Gaussian resampling of, or 

alternatively log transforming, the data has recently been shown to enhance correspondence 

between diffusion tractography and in vivo animal tract-tracing measurements of anatomical 

connectivity (van den Heuvel et al., 2015). 

Whole-Brain model 

To examine the interplay of local and global dynamics during rest as well as in 

response to task demands we studied the behavior of interconnected regions represented by a 

neural mass model characterized by the normal form of a supercritical Hopf bifurcation and 

connected according to an anatomical structural connectivity matrix. We chose this 

description because it can capture transitions from asynchronous to oscillatory behavior. 

Neural mass models characterized by the normal form of a Hopf bifurcation had previously 

been shown to provide a good characterization of regional dynamics (Freyer et al., 2011; 

Freyer, Roberts, Ritter, & Breakspear, 2012). Briefly, the dynamic behavior of each region j 

was given by  

 ( )2j
j j j j j

dz
z a i z t

dt
ω βη = + − +  

   (1) 

with zj being complex and hence separable into a real (xj) and imaginary (yj) part 

    ji
j j j jz r e x iyθ= = +   (2) 

and η being Gaussian white noise implemented as a Wiener process scaled by a factor β = .02. 

In equation 1 the bifurcation parameter aj represents a local control variable which determined 

whether a region was primarily dominated by noisy fluctuations ( 0ja <  ) or by a stable limit 

cycle with frequency   / 2j jf ω π=  ( 0ja >  ). The bifurcation parameter is thus meaningfully 

interpretable as it gives an indication as to whether brain regions exhibit oscillatory behavior. 

Supplementary figure 1 gives a detailed account of a single region thusly described. We also 

provide code for simulating the interaction among two mutually coupled regions online 

(https://github.com/MSenden/Hopf.git). Embedding these local dynamics into a large-scale 

https://github.com/MSenden/Hopf.git
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model and separating real from imaginary parts of z leads to whole-brain dynamics defined by 

the following set of coupled equations: 

 ( ) ( )2 2j
j j j j j ijj i j j

i

dx
a x y x y G C x x t

dt
ω βη = − − − + − +  ∑    (3) 

 ( ) ( )2 2j
j j j j j ij i j jj

i

dy
a x y y x C y t

dt
yGω βη+ = − − + − +  ∑   (4) 

In equations 3 and 4, the coupling strength G scaled the adjacency matrix C. Coupling 

strength is a global control variable separating global dynamics into a unistable regime in the 

form of a low activity ground state and a multistable regime. Optimal coupling generally 

occurs close to a bifurcation separating these regimes (Deco et al., 2011; Deco & Jirsa, 2012). 

Simulated BOLD signal of each area j was directly given by the real part of z (i.e. by x) with 

each region having its own characteristic frequency ωj in the range from .04 Hz to .07 Hz (a 

subset of the infraslow frequency range) given by the averaged peak frequency of the 

empirical BOLD signals in that range (for a distribution of characteristic frequencies per task 

see supplementary figure 2). We chose this frequency range as it had previously been 

identified as reliably reflecting gray matter signals and being minimally affected by aliased 

physiological noise (Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012)  

Optimization of Global Control Variables 

 In order to find the working point for which the model reproduces global dynamics 

exhibited by the cortex during rest, as well as in response to task demands, two parameters 

(control variables) needed to be optimized. The first was the previously mentioned global 

coupling strength G scaling the structural connectivity. The second global parameter was the 

bifurcation parameter A, a fixed value substituted for all local bifurcation parameters aj. We 

characterized global cortex dynamics in terms of grand average functional connectivity (FC), 

dynamic functional connectivity (DFC), and metastability (MS). Optimization of global 

control variables involved finding those values of G and A for which the model faithfully 

reproduced all three metrics as observed in our dataset (see figure 1a for a schematic 

overview).  
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Figure 1: Schematic Overview of Parameter Optimization. Panel A) gives a brief 

overview of the optimization procedure for global parameter settings. Two parameters, 

coupling strength G and global bifurcation parameter A (both encircled in red), were adjusted 

in order for the model to reproduce empirically observed grand average functional 

connectivity (FC), the cumulative distribution of dynamic functional connectivity (DFC), and 

mean MS across subjects. Metastability is the standard deviation of the Kuramoto parameter 

R(t) across time. Panel B) gives a brief overview of the optimization procedure of local 

bifurcation parameter aj (encircled in red). After initializing all aj to A (given the optimal 

working point A,G resulting from prior global optimization), values were adjusted according 

to a gradient descent strategy in order to capture the proportion p of power in a narrow 

frequency band with respect to a broad band observed for each cortical region j.   
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 Grand average functional connectivity. This metric reflects the static component of the 

relationships between region-specific activation patterns. A grand average FC matrix per task 

(and rest) was obtained by calculating individual FC matrices in the form of pairwise Pearson 

correlation coefficients of bandpass-filtered (in the range from .04 Hz to .07Hz) regional 

BOLD signals for each subject, and subsequently averaging across individual subject’s FCs. 

The same general logic applied to the grand average FC obtained for the simulated BOLD 

signal with the difference that rather than simulating separate subjects, simulation time 

corresponded to acquisition time multiplied by the number of subjects. The fit between 

empirical and simulated grand average FC was considered to be the Pearson correlation 

coefficient between the entries falling in the upper triangular of the respective matrices. 

Alternatively, model fit might be considered as the average of Pearson correlations between 

individual subject’s FC and simulated grand average FC.  The latter is worth noting since 

averaging over individual subjects’ FCs can affect network characteristics (Moussa, Steen, 

Laurienti, & Hayasaka, 2012). However, both approaches lead to identical fit distributions 

across parameter space and we only report results from using the grand average FC. 

 Dynamic functional connectivity. This metric reflects the dynamics of functional 

couplings as short-lived global network states dissolve and may re-emerge at different 

moments in time (Hutchison et al., 2013). The DFC for each task (and rest) was given by the 

cumulative distribution of the pairwise similarity between instantaneous functional networks 

across subjects. Specifically, in an individual subject we first computed the analytic signal of 

each cortical region by applying the Hilbert transformation to its bandpass-filtered BOLD 

signal. This allowed for the calculation of instantaneous phases (i.e. phases observed at each 

moment in time) of cortical regions. Next, a phase difference matrix was obtained at each 

point in time by calculating the instantaneous phase differences between all pairs of cortical 

regions. These difference matrices were then transformed to similarity matrices by computing 

the cosine of their entries (figure 2a). A single phase similarity matrix reflects the functional 

connectivity among cortical regions observed at a single moment in time; i.e. the 

instantaneous functional connectivity (iFC). To estimate the similarity between functional 

connectivity observed at different moments in time, we calculated the cosine similarity of the 

upper triangular of iFC matrices between all pairs of time points (figure 2b). This results in a 

DFC matrix (figure 2c). The entries falling in the upper triangular of this matrix form the 

distribution of similarity among pairs of time points in terms of the functional connectivity 

observed at these moments in time (figure 2d). This procedure was repeated for all subjects 

with the final distribution of cosine similarity values being the aggregated distributions 
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observed for individual subjects. We followed the same logic when calculating the DFC for 

simulated data. We calculated the Kolmogorov-Smirnoff distance between empirical and 

simulated distributions in order to evaluate their agreement. 

 

Figure 2: Schematic Overview of Dynamic Functional Connectivity Pipeline. Panel A) 

shows exemplary time signals as well as instantaneous functional connectivity (iFC) matrices 

at different moments in time. These iFC matrices reflect the cosine of instantaneous phase 

differences between all pairs of cortical regions at a given moment in time. Panel B) 

illustrates a timextime dynamic functional connectivity (DFC) matrix whose entry at t1,t2 is 

given by the cosine similarity between the upper triangular of iFC matrices observed at these 

moments in time. Panel C) depicts the full DFC matrix once the cosine similarity for all 

possible pairs of time points has been computed. Panel C) shows the distribution of cosine 
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similarities observed in the upper triangular of the DFC matrix. The Kolmogorov-Smirnoff 

distance between empirically observed and simulated distributions indicates how well the 

model reproduces empirical DFC. 

 

 Metastability. The final metric used here reflects the overall variability of network 

states of the system; i.e. in how far the system exhibits transient synchronization dynamics 

(Wildie & Shanahan, 2012). While this metric cannot reveal details with regard to the number 

or shape of distinct synchronization states, it has previously been shown to be a good 

constraint for models whose nodes exhibit oscillatory behavior (Cabral, Hugues, & Deco, 

2011;Cabral et al., 2014; Váša et al., 2015). Metastability in each task (and rest) was 

measured as the standard deviation of the Kuramoto order parameter observed over time. The 

Kuramoto order parameter R(t) reflects the extent of synchronization exhibited among brain 

regions at a specific moment in time and is given by 

 ( ) ( )

1

/j
n

i t

j

R t e nϕ

=

= ∑   (5) 

with φj(t) being the instantaneous phase of each bandpass-filtered  BOLD signal of regions j 

at time t and n the total number of brain regions. As for the estimation of DFC, instantaneous 

phases were calculated from analytic signals. For empirical data, MS was estimated for each 

subject separately and subsequently averaged. In the model it was obtained from the full-

length signal. The difference between average empirical MS and model MS reflects how well 

the model reproduces this metric. 

Optimization of the Local Control Variable 

The region specific bifurcation parameter aj was optimized by fitting spectral 

information of the empirical BOLD signals in each region (see figure 1b for a schematic 

overview). Specifically, local parameters were tuned to reproduce the region-specific 

proportions of power in a narrow band (0.04-0.07 Hz) with respect to a broad band (0.04-0.25 

Hz). To do so, the power spectrum  for each node j in the narrow as well as in the broad 

band was calculated to obtain the proportion 

( )jP f
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.07

.04

.25

.04

( )

( )

j

j

j

P f df
p

P f df
=
∫

∫
  (6) 

Subsequently, the local bifurcation parameter was updated according to a gradient descendent 

strategy  

 , ,( )j j j empirical j simulateda a p pη= + −   (7) 

A learning rate of η = .1 was used. Adjustment of this local parameter was only carried out 

after global parameters had been fit to assure that the procedure started with values in the 

vicinity of a global optimum. As for the optimization of global control variables, adjustment 

of the local bifurcation parameter was based on group data. 

Results 

Rich Club 

Rich club regions were identified from a binarized SC matrix obtained from setting all 

its non-zero entries to one. From this binary adjacency matrix rich club coefficients were 

calculated as the fraction of the number of existing connections between regions with degree 

larger than k to the possible number of connections among these regions (Colizza et al., 2006; 

Zhou & Mondragon, 2004). Next, the statistical significance of rich club coefficients for each 

degree k was determined by calculating the rich club coefficients for a set of 1000 degree-

preserving rewired adjacency matrices (Maslov & Sneppen, 2002) and identifying the first k 

for which the rich club coefficient of the binarized SC was larger than the 95th percentile of 

the rich club coefficients corresponding to the rewired matrices. Candidate rich club regions 

were subsequently identified as those whose degree exceeded the first k level for which the 

rich club coefficient reached statistical significance. These candidate regions included the 

bilateral precuneus, the bilateral superior frontal cortex, the bilateral superior parietal cortex, 

and the right insula. To ensure that these regions were not only individually rich but also 

formed a dense club we calculated the internal density of this set of regions. Subsequently, 

we, in turn, removed each region and re-evaluated the internal density of the remaining set. If 

a region is part of the rich club its removal should hardly affect internal density. On the other 

hand, if a region is not part of the rich club its removal should lead to a sharp rise in density. 
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Removal of the left precuneus, the right superior frontal cortex, left superior parietal, and right 

superior parietal each lead to decreases in internal density by 6.67 percent. Removal of the 

right precuneus and left superior frontal cortex each lead to a slight increase in internal 

density by 2.67 percent. These regions, therefore, form a dense club. However, removal of the 

right insula lead to an increase in internal density by 21.33 percent. Since ninety-five percent 

of density changes lay within ± 8.31 percent and density changes produced by removal of the 

right insula fell outside this interval, it was not considered a rich club region in this study. We 

validated this decision by removing the right insula from the SC matrix and observing no 

changes with regard to the rich club phenomenon. While exclusion of the right insula from the 

rich club was thus justified in our study, other studies using a different data set or employing a 

different parcellation scheme might still identify it as part of the rich club. 
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Figure 3: Structural data. Panel A) shows the weighted structural connectivity matrix 

consisting of 68 cortical regions. Regions are arranged according to the ordering given in 

table 1 with the rich club in the center of the matrix. Panel B) shows the rich club coefficient 

of the structural connectivity matrix as a function of degree cutoff k (black line). The shaded 

region depicts the threshold the rich club coefficient needs to exceed to reach significance. 

Significance was reached for k = 21 (marked with an asterisk). 
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# Region Name 
1 left banks of the superior temporal sulcus 
2 left caudalanterior-cingulate cortex 
3 left caudalmiddle frontal gyrus 
4 left cuneus 
5 left entorhinal cortex 
6 left fusiform gyrus 
7 left inferior parietal cortex 
8 left inferior temporal cortex 
9 left isthmus–cingulate cortex 
10 left lateral occipitalcortex 
11 left lateral orbital frontal cortex 
12 left lingual gyrus 
13 left medial orbital frontal cortex 
14 left middle temporal gyrus 
15 left parahippocampal gyrus 
16 left paracentral lobule 
17 left pars opercularis 
18 left pars orbitalis 
19 left pars triangularis 
20 left pericalcarine cortex 
21 left postcentral gyrus 
22 left posterior-cingulate cortex 
23 left precentral gyrus 
24 left rostralanterior cingulate cortex  
25 left rostralmiddle frontal gyrus 
26 left superior temporal gyrus 
27 left supramarginal gyrus 
28 left frontal pole 
29 left temporal pole 
30 left transverse temporal cortex 
31 left insula 
32 left precuneus 
33 left superior frontal cortex 
34 left superior parietal cortex 

35 right superior parietal cortex 
36 right superior frontal cortex 
37 right precuneus 
38 right insula 
39 right transverse temporal cortex 
40 right temporal pole 
41 right frontal pole 
42 right supramarginal gyrus 
43 right superior temporal gyrus 
44 right rostralmiddle frontal gyrus 
45 right rostralanterior cingulate cortex  
46 right precentral gyrus 
47 right posterior-cingulate cortex 
48 right postcentral gyrus 
49 right pericalcarine cortex 
50 right pars triangularis 
51 right pars orbitalis 
52 right pars opercularis 
53 right paracentral lobule 
54 right parahippocampal gyrus 
55 right middle temporal gyrus 
56 right medial orbital frontal cortex 
57 right lingual gyrus 
58 right lateral orbital frontal cortex 
59 right lateral occipitalcortex 
60 right isthmus–cingulate cortex 
61 right inferior temporal cortex 
62 right inferior parietal cortex 
63 right fusiform gyrus 
64 right entorhinal cortex 
65 right cuneus 
66 right caudalmiddle frontal gyrus 
67 right caudalanterior-cingulate cortex 
68 right banks of the superior temporal sulcus 
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Whole-Brain Functional Dynamics and Model Fitting 

Figure 4 shows the group level FC (A), DFC (B), and MS (C) observed for rest as well 

as for the four tasks which the model needed to reproduce. As can be appreciated from the 

figure, whole-brain FC patterns were highly similar. Indeed, all pairs correlated strongly with 

Pearson correlations in the range from .84 (rest with mental rotation) to .88 (flanker with 

mental rotation). Dynamic FC representing the dissolution and re-assembly of short-lived 

functional connectivity patterns showed differences between resting and task states as well as 

among different task states. The distributions of cosine similarities (see methods for details) 

were significantly different according to a paired Kolmogorov-Smirnoff test for all pairs of 

rest to task as well as among tasks (P-values for all paired tests were ≪ .001). Finally, 

metastability did not differ between resting and task states nor among different task states 

with the lowest P-value in a paired t-test equal to .26 (rest vs n-back).  

 

Figure 4: Empirical metrics. Panel A) shows the grand average FC for resting state as well 

as for the n-back, flanker, mental rotation, and odd-man out tasks. Regions are arranged 

according to the ordering given in table 1. Panel B) shows the distribution of cosine similarity 

as a metric of dynamic functional connectivity (DFC) for resting and all task states. Finally, 

panel C) shows boxplots of the standard deviation of the Kuramoto order parameter R as a 

metric of metastability observed in all functional states. 
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In order to find the optimal parameter settings for each task, we performed an 

exhaustive search of the parameter space. We examined global coupling G in the range from 

zero to .175 in 100 steps and global bifurcation parameter A in the range from minus to plus .5 

in 30 steps. For all functional states, figure 5 shows the Pearson correlation between model 

and empirical FC (A), the Kolmogorov-Smirnoff distance between model and empirical DFC 

(B), and model MS (C) for the entire parameter space (i.e. all combinations of explored values 

for A and G). Supplementary figures 3-5 give a more detailed account of the three metrics 

obtained from simulations at different working points for resting state data. To obtain an 

overall measure of how well our simulations reproduce empirical data, we combined the three 

metrics. First we converted each metric to a distance between model and empirical data. For 

FC this involved subtracting the Pearson correlation from one. For MS this involved 

computing the difference between model and empirical MS values. The Kolmogorov-

Smirnoff distance remained unchanged. Next we normalized each metric with respect to its 

range to adjust for differences in scales. Finally, we averaged across these three normalized 

distance measures (figure 5d). Alternatively, the maximum across the normalized distance 

measures might be taken. Optimal parameter values correspond to the region where this 

global measure is minimized. We identified the same region using the average and the 

maximum to aggregate distance measures. This region was highly similar across tasks with a 

broad range of global coupling values but only a narrow band of bifurcation parameter values 

leading to good model fit. The latter was especially due to the Kolmogorov-Smirnoff distance 

between model and empirical DFC distributions as well as MS. In both resting and all task 

states, we found the optimal value for A to be just below zero implying that overall brain 

regions operated close to a transition from asynchronous to oscillatory dynamics (i.e., at the 

brink of a supercritical Hopf bifurcation) for all functional states.    
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Figure 5: Parameter space exploration. This figure depicts the exploration of the parameter 

space defined by the global bifurcation parameter G and global coupling strength A for 

simulations of all functional states. Panel A) shows the correlation between empirical and 

simulation FC for all parameter pairings. Panel B) shows the Kolmogorov distance between 

empirical and simulated DFC for all parameter combinations. Panel C) shows the MS 

observed for simulated functional states for all parameter pairings. Finally, panel D) shows an 

overall measure of model fit based on an aggregation of the three metrics expressed as a 

distance between model and empirical data. The range of parameter values for which our 

model simulations where performed is marked in white. We report results only for .16G =

and .0517A = − . 

Local Dynamics 

 Next, we continued with the estimation of local bifurcation parameters aj for all 

regions j within each functional state. Given the broad range of good global coupling values, 

we chose to estimate local bifurcation parameters for each task for a number of optimal global 

coupling values ranging from .04 to .16. However, since results were not qualitatively 



21 
 

affected by this choice and since global coupling is conceptually a non-changing structural 

scaling factor, we present results only for the higher end of the range (G = .16). Local 

bifurcation parameter values were initialized to the average of optimal global bifurcation 

parameters values obtained across the range of optimal global coupling (aj = Aopt = -.0517) 

thus ensuring that values were in the vicinity of a global optimum before starting the gradient 

descent. To evaluate the robustness of our local optimization procedure we also initialized aj 

to random values in the range from -.5 to .5 (the results can be found in supplementary figure 

6). 

The results of local parameter estimations are shown in figure 6. For resting state, 60% 

of peripheral regions present with a bifurcation parameter above zero. As can be seen from 

the figure, rich club regions present with negative bifurcation parameters during rest. During 

task performance the number of peripheral regions presenting with a positive bifurcation 

parameter decreases. For the n-back, flanker, mental rotation, and odd-man out tasks 30%, 

44%, 34%, and 44% of peripheral regions present with a positive bifurcation parameter, 

respectively. The mean bifurcation parameter across peripheral regions was 𝑎𝑎�𝑝𝑝 = -.03 (95% 

CI [-.10, .04]) for rest, 𝑎𝑎�𝑝𝑝 = -.31 (95% CI [-.41, -.20]) for the n-back task, 𝑎𝑎�𝑝𝑝 = -.13 (95% CI 

[-.19, -.07]) for the flanker task, 𝑎𝑎�𝑝𝑝 = -.30 (95% CI [-.41, -.20]) for the mental rotation task, 

and  𝑎𝑎�𝑝𝑝 = -.05 (95% CI [-.10, -.01]) for the odd-man out task. While overall bifurcation 

parameter values drop for task states as compared to rest, rich club regions present with 

higher bifurcation parameters during task performance. The mean bifurcation parameter 

across rich club regions was 𝑎𝑎�𝑟𝑟𝑟𝑟 = -.53 (95% CI [-.59, -.48]), 𝑎𝑎�𝑟𝑟𝑟𝑟 = .22 (95% CI [.20, 

.25]), 𝑎𝑎�𝑟𝑟𝑟𝑟 = -.05 (95% CI [-.12, .01]), 𝑎𝑎�𝑟𝑟𝑟𝑟 = .21 (95% CI [.19, .23]), and  𝑎𝑎�𝑟𝑟𝑟𝑟 = -.09 (95% CI 

[-.12, -.06]) for rest and the four tasks, respectively. To further test whether rich club regions 

exhibit stronger positive changes in their bifurcation parameter than other cortical regions, we 

performed a cluster-based bootstrapping procedure.  To that end we obtained the differences 

in bifurcation parameter values between task and rest for each region and computed the 

average difference across the set of rich club regions. Subsequently, we repeatedly (1000 

times) sampled six regions from the entire set of cortical regions with replacement and 

calculated the average change within those sample. For all tasks the set of rich club regions 

exhibits changes far exceeding the 99th percentile of the thusly generated null-distribution. 

Specifically, the set of rich club regions presented with an average change of .75, .48, .74, and 

.45 for the n-back, flanker, mental rotation, and odd-man out tasks with their respective 99th 

percentiles being equal to .27, .28, .28, and .30. Supplementary figure 7 show a ranking of 
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brain regions according to the changes they exhibit in local bifurcation parameters per task. 

Next, we evaluated in how far individual rich club regions presented with an increased 

bifurcation parameter during task performance as compared to rest. We evaluated changes at 

the individual regions level by performing a blocked bootstrap test. The null-distribution for 

each region in each task was created from 1000 simulations of randomly generated rest and 

task samples and calculating the difference (task - rest) between local bifurcation parameters. 

Samples were created by first randomly drawing from the subject pool with replacement and 

then randomly placing one of each subject’s two states in the rest and the other in the task 

sample repeatedly until each sample comprised 14 subjects. Local bifurcation parameters 

were then optimized in each of these samples. Figure 7 shows the results. For the n-back task 

all rich club regions exhibited a difference (rest-task) exceeding the 95th percentile of the 

bootstrap null-distribution. Furthermore, the difference observed for the left and right superior 

parietal cortices and the right superior frontal cortex exceeded the 99th percentile. For the 

flanker task differences observed in the left and right precuneus as well as the left and right 

superior parietal cortices exceeded the 95th percentile. Differences observed in the left and 

right precuneus exceeded the 99th percentile. For the mental rotation task differences in all but 

the left superior frontal cortex exceeded the 95th percentile and the right superior frontal 

cortex exceeded the 99th percentile. Finally, for the odd-man out task only differences 

observed for the left and right superior parietal cortices exceeded the 95th percentile while 

none exceeded the 99th percentile. The cluster analysis clearly indicates that rich club regions 

as a group exhibited more oscillatory behavior during task performance as compared to rest. 

However, the analyses of individual rich club regions shows that which rich club regions 

increased their oscillatory behavior and to what degree was task dependent.  
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Figure 6: Local bifurcation parameters. This figure shows local bifurcation parameter aj 

values observed for each of the 68 regions in the five different states. Regions are arranged 

according to the ordering given in table 1 with rich club regions situated between the two red 

dashed lines. During rest, rich club regions display largely negative bifurcation parameter 

values whereas peripheral regions display positive and negative bifurcation parameters to a 

similar extent. During task performance, rich club regions largely display increased in their 

local bifurcation parameter values as compared to rest. 
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Figure 7: Differences in local bifurcation parameters values. This figure shows the change 

of regional bifurcation parameter values from rest for the four tasks aj(task)-aj(rest). Regions 

are again arranged according to ordering in table 1 with rich club regions between the red 

dashed lines. The shaded region depicts the null distribution of difference values as obtained 

from a blocked bootstrapping procedure. Rich club regions largely display increases in their 

local bifurcation parameter values for tasks as compared to rest. Individual rich club regions 

exceeding the 95th percentile of a bootstrap null-distribution in expected differences between 

task and rest are marked in red. 
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Following up on these results we investigated whether cortex-wide functional 

connectivity was indeed related to oscillations. First, we examined the general effect of 

oscillations on simulated functional connectivity by calculating average global connectivity 

resulting from simulations in which all regions exhibited identical bifurcation parameters 

ranging from -.25 to +.05 with global coupling fixed at G = .16. Increasing the bifurcation 

parameter was accompanied by increased correlations between pairs of brain regions (see 

figure 8). Furthermore, positive bifurcation parameter values were associated with very strong 

correlations. Note that bifurcation parameter values just below zero; that is, at the optimal 

point determined previously, showed the largest range of correlations reflecting the vast 

dynamic range the system exhibited at this point. Subsequently, we identified for each 

functional state the subset of regions whose bifurcation parameter was estimated to be above 

zero as well as the subset of regions whose bifurcation parameter was estimated to be below 

zero, and calculated the average empirical functional connectivity within these two subsets. 

We obtained bifurcation parameters and functional connectivity separately by repeatedly (100 

times) splitting the data in half and using one half of the data for the estimation of each. 

Figure 8b shows boxplots of the resulting estimates of average FC for the subsets of 

oscillating and non-oscillating regions for each functional state. In agreement with the finding 

that oscillations increased simulated functional connectivity values, average empirical FC was 

indeed higher among the subset of regions presenting with a positive bifurcation parameter for 

all functional states. 
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Figure 8: Relationship between bifurcation parameter and functional coupling. Panel A) 

shows the distributions of simulated functional connectivity (pairwise correlation) values for a 

range of global bifurcation parameter values A in the form of boxplots. A transition from 

negative to positive bifurcation parameter values is accompanied by overall higher pairwise 

correlation values, i.e. stronger overall coupling. The largest range of pairwise correlation 

values is observed for global bifurcation parameters just below zero. Panel B) shows boxplots 

of empirical FC values observed for regions presenting with a positive as compared to those 

presenting with a negative bifurcation parameter (a) value for each functional state. Larger FC 

values are observed for brain regions presenting with positive as compared to negative 

bifurcation parameter values, irrespective of the functional sate. 

Finally, we used the model to investigate whether oscillations exhibited by cortical 

rich club regions can be more effective in bringing about functional coupling than oscillations 

exhibited by peripheral regions alone. To this end we investigated in how far a set of brain 

regions exhibiting oscillatory behavior can synchronize cortical activation across the entire 

network. Two factors were of interest in this analysis: the first was the size of the set of brain 

regions exhibiting oscillatory behavior, whereas the second was whether this set included the 

rich club. The first factor was included since a sufficiently large number of peripheral (i.e. 

non rich club) regions exhibiting oscillations might be able to bring about synchronization 

without assistance of an oscillating rich club (as should be the case during rest). In terms of 

the first factor (size), a set comprising of 12, 18, 24, or 30 randomly selected peripheral 

regions were assigned a positive bifurcation parameter value (apos = .5) while the remaining 

regions were assigned a negative bifurcation parameter value (aneg = -.5). This constituted at 

the same time the condition of only peripheral regions exhibiting oscillations. For the 

condition in which the rich club was among the set of oscillating regions, six randomly 

selected peripheral regions among the set of oscillating regions were replaced by rich club 

regions; i.e. the bifurcation parameter of these selected regions was set to -.5 while the 

bifurcation parameter of all rich club regions was set to +.5. All peripheral regions had 

characteristic frequencies in the range from .04 Hz to .07 Hz whereas rich club regions were 

assigned a characteristic frequency at the center of this range (.055 Hz) in order to provide a 

pulse frequency. Each region’s phase was initialized to zero but was effectively determined 

by the additive Gaussian noise term in equation 1. We measured synchrony among brain 

regions both in terms of phase and in terms of frequency. For synchrony in terms of phase we 

calculated the Kuramoto order parameter R (see methods for details) across brain regions at a 

frequency of .055 Hz. In terms of frequency we measured synchrony by calculating the power 
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spectrum for each region in the aforementioned range normalized with respect to its 

maximum value. Subsequently, we averaged the power spectra over regions. If all brain 

regions exhibit fluctuations at the same frequency, the average power spectrum is 

characterized by a single sharp peak at the shared frequency (~.055 Hz). If, on the other hand, 

brain regions exhibit fluctuations at different frequencies, the average power spectrum is 

characterized by a broader peak. In order to characterize the breadth of the peak we fitted a 

Gaussian distribution to it and calculated its FWHM relative to the considered frequency 

range. We performed these simulations for 100 random selections of peripheral regions to 

exhibit oscillations nested in 100 randomly generated distributions of characteristic 

frequencies across regions. Hence, we performed 10,000 simulations for each combination of 

the number of oscillating peripheral regions and an oscillating or not oscillating rich club. 

 Figure 9 shows the relative FWHM as well as the Kuramoto order parameter R as a 

function of the total number of oscillating brain regions separately for the case that rich club 

regions exhibited oscillations and for the case that they did not. Synchronization both in terms 

of frequency as well as in terms of phase increased with a larger number of oscillating 

regions. Importantly, an oscillating rich club accelerated this effect. This effect was most 

pronounced for phase synchronization, but also apparent for frequency synchronization; 

especially if few peripheral regions were supplemented by the rich club. Such a configuration 

was characteristic of task performance. A larger number of oscillating peripheral regions (30 

in this simulation) achieved good synchronization levels even in the absence of an oscillating 

rich club. 
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Figure 9: Synchronization. This figure depicts the extent to which brain regions are 

synchronized as a function of the number of brain regions set to have a positive bifurcation 

parameter value. Separate lines represent the cases where the set of regions having a positive 

bifurcation parameter value include the rich club (green) or do not include the rich club (red). 

Panel A) shows the extent of synchronization in terms of frequency as measured by the full 

width at half maximum of the power spectrum averaged across brain regions. Lower values 

indicate better synchronization. For the range of ~14 to 24 regions presenting with a positive 

bifurcation parameter value, it is beneficial if this set includes the rich club. Panel B) shows 

the extent of synchronization in terms of phases as measured by the Kuramoto order 

parameter R. Larger values indicate better synchronization. Unless a large number of regions 
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is oscillating it is beneficial for synchronization to include the rich club among the oscillating 

regions. 

Discussion 

 Using a combined computational modeling and fMRI approach we investigated 

whether oscillations constitute a viable candidate mechanism through which cortical rich club 

regions can support functional network formation. Our results support this idea. First, brain 

regions whose local bifurcation parameter suggested that they exhibit oscillations showed an 

increased propensity to engage in functional coupling; both in terms of empirical as well as 

simulated functional connectivity. Second, in simulations, oscillations exhibited by the rich 

club provided a timing signal sufficient to synchronize brain regions operating at a range of 

idiosyncratic frequencies and phases. Finally, increased oscillatory behavior exhibited by rich 

club regions with simultaneous reductions in the number of peripheral regions engaging in 

oscillations demarcated empirically observed task states from resting state. In the present 

study we used tasks reflecting a wide range of cognitive functions; namely, working memory, 

executive function and inhibition, mental rotation, and semantic reasoning. Given that these 

cognitive functions are not only conceptually distinct but minimally overlapping with respect 

to their associated functional networks (Smith et al., 2009), it is reasonable to conclude that 

the observed changes in oscillatory behavior among the rich club as a whole are general rather 

than limited to specific cognitive processes. At the same time, differences in the degree to 

which individual rich club regions exhibit oscillations indicates that this behavior is adaptive 

to task demands. During task performance stable coupling among functionally relevant, 

specialized brain regions is required. During task performance, oscillating rich club regions 

might thus provide a pulse frequency to facilitate functional coupling among functionally 

relevant brain regions involved in task execution. Specifically, the reduced number of 

oscillating peripheral regions (compared to rest) might be insufficient to sustain stable 

functional coupling unless supported by oscillations exhibited by rich club regions. This 

would be in line with previous simulation findings that the rich club can support functional 

coupling among peripheral brain regions (Gollo et al., 2015; Schmidt et al., 2015; Senden et 

al., 2014). During rest, on the other hand, rich club regions were not oscillating and could thus 

not impose a specific rhythm on the cortex. This behavior might be more conducive to 

flexible re-coupling among peripheral regions since it allows for larger groups of peripheral 

regions to engage in oscillatory behavior and hence to engage in (potentially short-lived) 



30 
 

functional coupling without producing a fully coupled (epileptic) state. This might be 

advantageous for the exploration of the brain’s functional repertoire (Deco & Jirsa, 2012). 

A question at this point is whether the rich club is the origin of this coordination or 

provides the means for peripheral regions to exhibit control over the network. Previous 

research suggests the latter since the states of a complex system, and especially those which 

are difficult to reach, are controlled by regions of low degree rather than by hubs (Gu et al., 

2015; Liu, Slotine, & Barabási, 2011). Nevertheless, the presence of hubs largely increases 

the general controllability of said system (Liu et al., 2011). Note that controllability of 

networks in general does not necessarily require rich club organization but rather some 

densely interconnected structural backbone (e.g. a single hyperconnected node). In the brain 

this backbone is provided by the cortical rich club (van den Heuvel et al., 2012) whose role 

might be to enable peripheral regions to control the state, i.e. functional network 

configuration, of the cortex. As such, the rich club might provide a central workspace of 

information integration wherein peripheral brain regions compete for control of the system as 

recently proposed by Shanahan (2012). During rest, such conflict might be unresolved or, at 

least, recurring whereas task performance might necessitate a clear winner. This winner might 

then recruit the rich club to move the brain into the required functional state as well as to 

support communication among regions constituting this state. Our results suggest that this is 

dynamically achieved by moving the rich club into an (infraslow) oscillatory regime.  

Our as well as previous findings (Gollo et al., 2015; Hiltunen et al., 2014; Monto et al., 

2008; Schmidt et al., 2015; Vanhatalo et al., 2004) suggest that oscillations are relevant for 

global brain communication. However, it is currently unknown whether infraslow oscillations 

are immediately relevant for functional integration or are merely the filtered manifestation of 

a faster frequency band. It is principally conceivable, for instance, that stimuli presented at 

regular intervals impose an oscillatory activation pattern on task-relevant brain regions. While 

inter-trial intervals do not vary within tasks in our study, they differ between tasks thus 

reducing the probability that our results are due to the stimulation protocol. Furthermore, 

neither stimulation frequency aliases into the frequency band of interest (.04 Hz - 0.7 Hz). 

Finally, if the emergence of oscillations in our simulations were due purely to stimulation, we 

would expect largest changes in oscillatory behavior among task-specific and sensory regions 

rather than among rich club regions. These considerations do not rule out, however, that the 

observed infraslow oscillations constitute a proxy for oscillations occurring within alpha/beta 

or gamma frequency bands. This is a question that needs to be addressed using empirical data 
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of higher temporal resolution. Due to the slow time scale of infraslow oscillations, it is at any 

rate unlikely that they carry the actual signals to be communicated between brain regions. A 

more likely function for them would be to align excitability states of brain regions (Hiltunen 

et al., 2014; Vanhatalo et al., 2004) and hence to establish communication channels among 

them. Such an interpretation for the potential role of infraslow oscillations would agree with 

recent electrophysiological findings which showed that the power envelope of higher 

frequencies, most prominently in the range from 8 Hz to 32 Hz, is itself modulated at 

infraslow frequencies (Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012). These higher 

frequencies are far more likely to reflect the actual signal in line with a communication 

through coherence hypothesis (Fries, 2001; Fries, 2009; Michalareas et al., 2016). While our 

findings thus speak to the potential function of rich club regions to provide a timing signal for 

global brain communication, it remains to be investigated whether rich club regions also 

mediate and/or modulate high frequency signals exchanged among peripheral regions.  

Furthermore, if infraslow oscillations are indeed meaningful, a question arises 

regarding the neural mechanism giving rise to them. The neural mass model employed here 

gives a descriptive rather than a mechanistic account of local dynamics. This provides the 

appropriate level of detail for investigating the question of which local dynamics are exhibited 

by interconnected brain regions and how these change from resting to task states in an fMRI 

context. However, future work is needed to address the neural mechanism underlying these 

local dynamics. A candidate mechanism comes in the form of interactions between cortical 

and thalamic neuronal populations (Breakspear et al., 2006; Freyer et al., 2011, 2012). A 

neural mass model implementing these interactions in the presence of state-dependent noise 

has recently been shown to account for known spontaneous transitions between two distinct 

modes of power in the alpha frequency band (Freyer et al., 2011; Freyer, Aquino, Robinson, 

Ritter, & Breakspear, 2009). Given the relationship between infraslow oscillations and the 

alpha and beta rhythms (Hipp et al., 2012), the slow dynamics examined here might reflect 

changes in the power envelope resulting from these transitions. Finally, since relay nuclei in 

the thalamus can themselves exhibit infraslow oscillations (Lőrincz, Geall, Bao, Crunelli, & 

Hughes, 2009), a straightforward extension of the cortico-thalamic neural mass model may 

allow it to account for both spontaneous as well as structured, i.e. infraslow oscillatory, 

transitions between low and high power modes in the alpha and/or beta bands. 

Apart from the above, our results lead to a number of further questions and 

predictions. First, if the rich club is indeed a locus of competition among peripheral regions 
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for network control, then it should receive a high degree of input but only provide sparse 

output; namely output reflecting communication among the winning set of regions. 

Furthermore, this should be task dependent both in terms of the total amount of input and 

output each rich club region receives and sends as well as in terms of the exact patterns of in 

and out relations. Second, if coupling via oscillations reflects the establishment of task-

relevant communication channels, then one should expect to find information transfer among 

these regions (possibly mediated through the rich club) coded at higher frequencies, and that 

the informational content of these signals is relevant for, and reflects, the task at hand. Related 

to this, the information content as well as the degree to which rich club regions exhibit 

oscillatory behavior might also reflect task difficulty, a factor we did not take into account 

here. Finally, an important question future research should address is how local and whole-

brain dynamics vary across individuals and how this relates to individual differences in the 

underlying structural connectivity. This would call for fMRI and diffusion-weighted MRI data 

to be acquired in the same subjects. Additionally, a larger sample size would be helpful in 

characterizing this variability. Furthermore, fitting model parameters to individual subject 

data would require longer runs thus putting practical limits on the number of tasks for which 

data can be acquired. 

In conclusion, we find that (infraslow) oscillations constitute a potential mechanism 

for rich club regions to shape whole-brain functional coupling in a functionally specific 

manner. In conjunction with converging results from connectomics (van den Heuvel et al., 

2012; Zamora-López et al., 2009), neuroimaging (Braga et al., 2013; Leech et al., 2012), and 

computational modeling (Deco & Jirsa, 2012; Deco et al., 2012; Gollo et al., 2015; Gu et al., 

2015; Liu et al., 2011; Schmidt et al., 2015; Senden et al., 2014), this is in line with the notion 

that rich club regions support and shape the concerted interplay of specialized brain regions 

required for higher cognition. This leads to a conceptualization of the rich club as the 

structural underpinning of a global neuronal workspace (Dehaene & Changeux, 2011; 

Harriger, van den Heuvel, & Sporns, 2012; Shanahan, 2012). Furthermore, our results 

emphasize the importance of the integration of large-scale computational models with locally 

specific dynamics in conjunction with empirical research for investigating whole-brain 

functional network states. While all empirical metrics could be reproduced by our model 

using identical global parameters for each task, fitting and interpretation of parameters 

controlling local dynamics enabled us to demarcate resting and task states.  
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Supplementary Materials 

 

Supplementary Figure 1: Local dynamics. This figure depicts the behavior individual (i.e. 

uncoupled) brain region exhibit for different values of the local bifurcation parameter a. Panel 

A) shows phase portraits detailing the trajectories of the complex variable z in terms of its real 

(x-axis) and imaginary (y-axis) components. For each value of a, two trajectories are 

highlighted. Circles represent initial conditions, while squares represent stable fixed points. 

The first trajectory (red) starts at initial condition 0 1z i= + while the second (blue) starts at  

0.5 0.5z i= −   for all values of a. If a is below zero a single stable (attracting) fixed point 

exists at 0 0 0z i= + = . At 0a =  the system undergoes a bifurcation with a stable spiral 

towards the fixed point emerging. As a increases beyond zero, the fixed point becomes 

repellent and the system exhibits a stable limit cycle whose radius depends on the exact value 
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of a. Panel B) shows the behavior of the real component of z (i.e. what we treat as the 

simulated BOLD signal) corresponding to the three phase portraits presented in panel A. The 

model region had an intrinsic frequency of .05 Hz and was simulated for 300 seconds. If a is 

below zero the signal quickly decays. For 0a = the signal oscillates at its intrinsic frequency 

with its amplitude decreasing over time. Finally, if a is larger than zero, the signal exhibits 

oscillations at fixed frequency and amplitude. Panel B) shows again the simulated BOLD 

signal but in the presence of noise modeled as a Wiener process scaled by a factor .02β = . If 

a is below zero, the signal is essentially noise centered on zero. If a is equal to zero, the signal 

is a hybrid of noise and oscillations. If a is larger than zero, the signal is oscillatory. 
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Supplementary Figure 2: Characteristic Frequencies. This figure shows how distributions 

of characteristic frequencies across brain regions for each task. Distributions are largely 

similar for tasks but are shifted with respect to rest. According to a paired Kolmogorov-

Smirnoff test, the distribution for rest differs from every task with all P-values being ≪ .001. 

Among the tasks the mental rotation task differs significantly from both the flanker (P = .004) 

and odd-man out (P = .039) tasks. 

 

 

Supplementary Figure 3: Functional Connectivity at Different Working Points. This 

figure shows how the Pearson correlation between simulated and empirical grand average 

functional connectivity observed during rest depends on the working point of the system. 
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Specifically, Pearson correlation coefficients are depicted over the entire range of values 

explored for the bifurcation parameter A for a fixed value of global coupling (G = .16). The 

inlay on the top right corner shows the empirical functional connectivity the model needs to 

reproduce. The bottom row shows simulated functional connectivity observed for three 

exemplary values for A, namely: A = -.25, A = -.06 (optimal point), and A = +.25. 

 

Supplementary Figure 4: Dynamic Functional Connectivity at Different Working 

Points. This figure shows how the Kolmogorov-Smirnoff distance between simulated and 

empirical dynamic functional connectivity observed during rest depends on the working point 

of the system. Specifically, Kolmogorov-Smirnoff distances are depicted over the entire range 

of values explored for the bifurcation parameter A for a fixed value of global coupling (G = 
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.16). The inlay on the top right corner shows the empirical distribution of dynamic functional 

connectivity (cosine similarity) values the model needs to reproduce. The bottom row shows 

simulated distributions observed for three exemplary values for A, namely: A = -.25, A = -

.085 (optimal point), and A = +.25. 

 

Supplementary Figure 5: Metastability at Different Working Points. This figure shows 

how simulated metastability depends on the working point of the system. Specifically, 

metastability is depicted over the entire range of values explored for the bifurcation parameter 

A for a fixed value of global coupling (G = .16). The dashed red line indicates the average 

metastability observed for resting state state. The bottom row shows instantaneous Kuramoto 

order parameter values over the entire range of time produced by model simulations for three 

exemplary values for A, namely: A = -.25, A = -.01 (optimal point), and A = +.25. 
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Supplementary Figure 6: Convergence of local optimization process. Panel A) shows 

histograms of the correlations between local bifurcation parameters obtained from initializing 

each brain region with aj = -.0517 and those obtained from 100 random initialization values 

per brain region. Median correlations were r = .94, r = .99, r = .97, r = .99, and r = .90 for 

rest and the four tasks, respectively. Panel B) shows histograms of the residual mean squared 

error (rmse) between local bifurcation parameters obtained from initializing each brain region 

with aj = -.0517 and those obtained from 100 random initialization values per brain region. 

Median error rates were rmse = .13, rmse = .10, rmse = .10, rmse = .10, and rmse = .12 for 

rest and the four tasks, respectively. 
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Supplementary Figure 7: Ranking of cortical regions. This figure shows the ranking of 

cortical regions according to the differences in local bifurcation parameter between task and 

rest for all tasks. Rich club regions (marked in red) are among the 10 regions exhibiting the 

strongest differences in every task. 
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