000841202 001__ 841202 000841202 005__ 20220930130138.0 000841202 0247_ $$2doi$$a10.1167/17.14.8 000841202 0247_ $$2Handle$$a2128/16189 000841202 0247_ $$2WOS$$aWOS:000418241500008 000841202 0247_ $$2altmetric$$aaltmetric:30697290 000841202 0247_ $$2pmid$$apmid:29228141 000841202 037__ $$aFZJ-2017-08295 000841202 041__ $$aEnglish 000841202 082__ $$a610 000841202 1001_ $$0P:(DE-Juel1)171481$$aZeng, Hang$$b0$$eCorresponding author 000841202 245__ $$aThe source of visual size adaptation 000841202 260__ $$aRockville, Md.$$bARVO$$c2017 000841202 3367_ $$2DRIVER$$aarticle 000841202 3367_ $$2DataCite$$aOutput Types/Journal article 000841202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513085639_1947 000841202 3367_ $$2BibTeX$$aARTICLE 000841202 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000841202 3367_ $$00$$2EndNote$$aJournal Article 000841202 520__ $$aSize adaptation describes the tendency of the visual system to adjust neural responsiveness of size representations after prolonged exposure to particular stimulations. A larger (or smaller) adaptor stimulus influences the perceived size of a similar test stimulus shown subsequently. Size adaptation may emerge on various processing levels. Functional representations of the adaptor to which the upcoming stimulus is adapted may be coded early in the visual system mainly reflecting retinal size. Alternatively, size adaptation may involve higher order processes that take into account additional information such as an object's estimated distance from the observer, hence reflecting perceived size. The present study investigated whether size adaptation is based on the retinal or the perceived size of an adaptor stimulus. A stimulus' physical and perceived sizes were orthogonally varied using perceived depth via binocular disparity, employing polarized 3D glasses. Four different adaptors were used, which varied in physical size, perceived size, or both. Two pairs of adaptors which were identical in physical size did not cause significantly different adaptation effects although they elicited different perceived sizes which were sufficiently large to produce differential aftereffects when induced by stimuli that physically differed in size. In contrast, there was a significant aftereffect when adaptors differed in physical size but were matched in perceived size. Size adaptation was thus unaffected by perceived size and binocular disparity. Our data suggest that size adaptation emerges from neural stages where information from both eyes is still coded in separate channels without binocular interactions, such as the lateral geniculate nucleus. 000841202 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0 000841202 588__ $$aDataset connected to CrossRef 000841202 7001_ $$0P:(DE-Juel1)156202$$aKreutzer, Sylvia$$b1 000841202 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b2 000841202 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b3 000841202 773__ $$0PERI:(DE-600)2106064-2$$a10.1167/17.14.8$$gVol. 17, no. 14, p. 8 -$$n14$$p8$$tJournal of vision$$v17$$x1534-7362$$y2017 000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.pdf$$yOpenAccess 000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.gif?subformat=icon$$xicon$$yOpenAccess 000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000841202 8767_ $$81000007500$$92018-01-08$$d2018-01-09$$eAPC$$jZahlung erfolgt$$lKK: Barbers$$zUSD 1850,- 000841202 909CO $$ooai:juser.fz-juelich.de:841202$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000841202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171481$$aForschungszentrum Jülich$$b0$$kFZJ 000841202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b2$$kFZJ 000841202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b3$$kFZJ 000841202 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0 000841202 9141_ $$y2017 000841202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000841202 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000841202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ VISION : 2015 000841202 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000841202 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000841202 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000841202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000841202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000841202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000841202 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000841202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000841202 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000841202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000841202 920__ $$lyes 000841202 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000841202 9801_ $$aFullTexts 000841202 980__ $$ajournal 000841202 980__ $$aVDB 000841202 980__ $$aUNRESTRICTED 000841202 980__ $$aI:(DE-Juel1)INM-3-20090406 000841202 980__ $$aAPC