000841202 001__ 841202
000841202 005__ 20220930130138.0
000841202 0247_ $$2doi$$a10.1167/17.14.8
000841202 0247_ $$2Handle$$a2128/16189
000841202 0247_ $$2WOS$$aWOS:000418241500008
000841202 0247_ $$2altmetric$$aaltmetric:30697290
000841202 0247_ $$2pmid$$apmid:29228141
000841202 037__ $$aFZJ-2017-08295
000841202 041__ $$aEnglish
000841202 082__ $$a610
000841202 1001_ $$0P:(DE-Juel1)171481$$aZeng, Hang$$b0$$eCorresponding author
000841202 245__ $$aThe source of visual size adaptation
000841202 260__ $$aRockville, Md.$$bARVO$$c2017
000841202 3367_ $$2DRIVER$$aarticle
000841202 3367_ $$2DataCite$$aOutput Types/Journal article
000841202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513085639_1947
000841202 3367_ $$2BibTeX$$aARTICLE
000841202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841202 3367_ $$00$$2EndNote$$aJournal Article
000841202 520__ $$aSize adaptation describes the tendency of the visual system to adjust neural responsiveness of size representations after prolonged exposure to particular stimulations. A larger (or smaller) adaptor stimulus influences the perceived size of a similar test stimulus shown subsequently. Size adaptation may emerge on various processing levels. Functional representations of the adaptor to which the upcoming stimulus is adapted may be coded early in the visual system mainly reflecting retinal size. Alternatively, size adaptation may involve higher order processes that take into account additional information such as an object's estimated distance from the observer, hence reflecting perceived size. The present study investigated whether size adaptation is based on the retinal or the perceived size of an adaptor stimulus. A stimulus' physical and perceived sizes were orthogonally varied using perceived depth via binocular disparity, employing polarized 3D glasses. Four different adaptors were used, which varied in physical size, perceived size, or both. Two pairs of adaptors which were identical in physical size did not cause significantly different adaptation effects although they elicited different perceived sizes which were sufficiently large to produce differential aftereffects when induced by stimuli that physically differed in size. In contrast, there was a significant aftereffect when adaptors differed in physical size but were matched in perceived size. Size adaptation was thus unaffected by perceived size and binocular disparity. Our data suggest that size adaptation emerges from neural stages where information from both eyes is still coded in separate channels without binocular interactions, such as the lateral geniculate nucleus.
000841202 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000841202 588__ $$aDataset connected to CrossRef
000841202 7001_ $$0P:(DE-Juel1)156202$$aKreutzer, Sylvia$$b1
000841202 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b2
000841202 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b3
000841202 773__ $$0PERI:(DE-600)2106064-2$$a10.1167/17.14.8$$gVol. 17, no. 14, p. 8 -$$n14$$p8$$tJournal of vision$$v17$$x1534-7362$$y2017
000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.pdf$$yOpenAccess
000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.gif?subformat=icon$$xicon$$yOpenAccess
000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841202 8564_ $$uhttps://juser.fz-juelich.de/record/841202/files/i1534-7362-17-14-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841202 8767_ $$81000007500$$92018-01-08$$d2018-01-09$$eAPC$$jZahlung erfolgt$$lKK: Barbers$$zUSD 1850,-
000841202 909CO $$ooai:juser.fz-juelich.de:841202$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000841202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171481$$aForschungszentrum Jülich$$b0$$kFZJ
000841202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b2$$kFZJ
000841202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b3$$kFZJ
000841202 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000841202 9141_ $$y2017
000841202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841202 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000841202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ VISION : 2015
000841202 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841202 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841202 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841202 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841202 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000841202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841202 920__ $$lyes
000841202 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000841202 9801_ $$aFullTexts
000841202 980__ $$ajournal
000841202 980__ $$aVDB
000841202 980__ $$aUNRESTRICTED
000841202 980__ $$aI:(DE-Juel1)INM-3-20090406
000841202 980__ $$aAPC