001     841203
005     20210129231937.0
024 7 _ |a 10.1093/femsle/fnx238
|2 doi
024 7 _ |a 0378-1097
|2 ISSN
024 7 _ |a 1574-6968
|2 ISSN
024 7 _ |a WOS:000428748700001
|2 WOS
037 _ _ |a FZJ-2017-08296
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Morschett, Holger
|0 P:(DE-Juel1)161365
|b 0
245 _ _ |a Laboratory scale photobiotechnology – Current trends and future perspectives
260 _ _ |a Oxford
|c 2018
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1519377626_11420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phototrophic bioprocesses are a promising puzzle piece in future bioeconomy concepts but yet mostly fail for economic reasons. Besides other aspects, this is mainly attributed to the omnipresent issue of optimal light supply impeding scale-up and -down of phototrophic processes according to classic established concepts. This MiniReview examines two current trends in photobiotechnology, namely microscale cultivation and modeling and simulation. Microphotobioreactors are a valuable and promising trend with microfluidic chips and microtiter plates as predominant design concepts. Providing idealized conditions, chip systems are preferably to be used for acquiring physiological data of microalgae while microtiter plate systems are more appropriate for process parameter and medium screenings. However, these systems are far from series technology and significant improvements especially regarding flexible light supply remain crucial. Whereas microscale is less addressed by modeling and simulation so far, benchtop photobioreactor design and operation have successfully been studied using such tools. This particularly includes quantitative model-assisted understanding of mixing, mass transfer, light dispersion and particle tracing as well as their relevance for microalgal performance. The ultimate goal will be to combine physiological data from microphotobioreactors with hybrid models to integrate metabolism and reactor simulation in order to facilitate knowledge-based scale transfer of phototrophic bioprocesses.
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Loomba, Varun
|0 P:(DE-Juel1)164366
|b 1
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 2
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 3
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 4
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 5
|e Corresponding author
773 _ _ |a 10.1093/femsle/fnx238
|0 PERI:(DE-600)1501716-3
|n 1
|p 1-9
|t FEMS microbiology letters
|v 365
|y 2018
|x 1574-6968
856 4 _ |u https://juser.fz-juelich.de/record/841203/files/fnx238.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841203/files/fnx238.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841203/files/fnx238.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841203/files/fnx238.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841203/files/fnx238.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841203/files/fnx238.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:841203
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164366
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129053
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|2 G:(DE-HGF)POF3-500
|v Innovative Synergisms
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FEMS MICROBIOL LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21