000841224 001__ 841224
000841224 005__ 20240711085649.0
000841224 0247_ $$2Handle$$a2128/16257
000841224 0247_ $$2ISSN$$a1866-1793
000841224 020__ $$a978-3-95806-282-5
000841224 037__ $$aFZJ-2017-08316
000841224 041__ $$aEnglish
000841224 1001_ $$0P:(DE-Juel1)164459$$aWang, Panpan$$b0$$eCorresponding author$$gfemale$$ufzj
000841224 245__ $$aNumerical Simulation of Plasma Spray-Physical Vapor Deposition$$f- 2017-12-15
000841224 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000841224 300__ $$aIX, 127 S.
000841224 3367_ $$2DataCite$$aOutput Types/Dissertation
000841224 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000841224 3367_ $$2ORCID$$aDISSERTATION
000841224 3367_ $$2BibTeX$$aPHDTHESIS
000841224 3367_ $$02$$2EndNote$$aThesis
000841224 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1513322467_10529
000841224 3367_ $$2DRIVER$$adoctoralThesis
000841224 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v401
000841224 502__ $$aUniversität Bochum, Diss., 2017$$bDissertation$$cUniversität Bochum$$d2017
000841224 520__ $$aThe modeling of the plasma spray process is driven by the intention of further increasing the understanding the growth mechanisms of columnar thermal barrier coatings (TBC). The major parameters associated with the deposition process in the experiment are the power input, plasma gas composition, and chamber pressures resulting in distinct microstructures. Therefore, the objective of this study was to simulate the plasma jet and the growth of columnar TBCs. Five main topics were examined: (1) thermodynamic and transport properties for different plasma mixtures (35Ar-60He, 35Ar-60He-10H$_{2}$, and 100Ar-10H$_{2}$)depending on the pressure and the temperature; (2) vacuum plasma spray (VPS); (3) plasma-spray physical vapor deposition (PS-PVD); (4) built-up of columnar coatings using the Monte-Carlo method; (5) validation by experiments. Investigations of thermodynamic and transport properties gave the basis for the understanding of the plasma process and provide data of the following plasma jet modeling. The plasma jet modeling used three types of plasma mixture (35Ar-60He atpressures ranging from 200 Pa-10000 Pa, 35Ar-60He-10H$_{2}$ at a pressure of 200 Pa, and100Ar-10H$_{2}$ at a pressure of 200 Pa) was carried out by ANSYS Fluent 17, the results were compared to photographs of the plasma jets. Taking into account the influence of non-equilibrium, the plasma composition and spectral line intensities were calculated. Results of the measured and calculated intensities proved that non-equilibrium exists. Finally, a two-dimensional Monte Carlo simulation was used to investigate the formation of columnar growth in plasma spray-physical vapor deposition process (PS-PVD). The surface diffusion in the coating was neglected because of the high deposition rate. The detailed examination of the morphology, the orientation, the porosity level of the columns is given, which is compared to the microstructures produced by a PS-PVD process.
000841224 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000841224 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000841224 8564_ $$uhttps://juser.fz-juelich.de/record/841224/files/Energie_Umwelt_401.pdf$$yOpenAccess
000841224 8564_ $$uhttps://juser.fz-juelich.de/record/841224/files/Energie_Umwelt_401.gif?subformat=icon$$xicon$$yOpenAccess
000841224 8564_ $$uhttps://juser.fz-juelich.de/record/841224/files/Energie_Umwelt_401.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841224 8564_ $$uhttps://juser.fz-juelich.de/record/841224/files/Energie_Umwelt_401.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841224 8564_ $$uhttps://juser.fz-juelich.de/record/841224/files/Energie_Umwelt_401.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841224 8564_ $$uhttps://juser.fz-juelich.de/record/841224/files/Energie_Umwelt_401.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841224 909CO $$ooai:juser.fz-juelich.de:841224$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000841224 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841224 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000841224 9141_ $$y2017
000841224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164459$$aForschungszentrum Jülich$$b0$$kFZJ
000841224 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000841224 920__ $$lyes
000841224 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000841224 9801_ $$aFullTexts
000841224 980__ $$aphd
000841224 980__ $$aVDB
000841224 980__ $$aUNRESTRICTED
000841224 980__ $$abook
000841224 980__ $$aI:(DE-Juel1)IEK-1-20101013
000841224 981__ $$aI:(DE-Juel1)IMD-2-20101013