000841226 001__ 841226
000841226 005__ 20210129231940.0
000841226 0247_ $$2Handle$$a2128/16258
000841226 0247_ $$2ISSN$$a1866-1777
000841226 020__ $$a978-3-95806-274-0
000841226 037__ $$aFZJ-2017-08318
000841226 041__ $$aEnglish
000841226 1001_ $$0P:(DE-Juel1)140489$$aAslam, Nabeel$$b0$$eCorresponding author$$gmale$$ufzj
000841226 245__ $$aResistive switching memory devices fromatomic layer deposited binary and ternaryoxide thin films$$f- 2017-12-15
000841226 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000841226 300__ $$aX, 172 S.
000841226 3367_ $$2DataCite$$aOutput Types/Dissertation
000841226 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000841226 3367_ $$2ORCID$$aDISSERTATION
000841226 3367_ $$2BibTeX$$aPHDTHESIS
000841226 3367_ $$02$$2EndNote$$aThesis
000841226 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1516278600_19723
000841226 3367_ $$2DRIVER$$adoctoralThesis
000841226 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Information / Information$$v52
000841226 502__ $$aRWTH Aachen, Diss., 2017$$bDissertation$$cRWTH Aachen$$d2017
000841226 520__ $$aRedox-based resistive switching memory (ReRAM) is rigorously investigated for next generation non-volatile storage devices, which comprise the new storage class memory(SCM) and realizations of logic in memory functions that aim towards the internet of things (IoT) and to neuromorphic computing. These applications require an aggressive downscaling of the energy consumption of the new memory devices as compared to actually used volatile dynamic random access memory (DRAM) or non-volatile Flash memory. ReRAM perfectly fits here due to its high energy efficiency, that means, low voltage operation, good endurance and stable retention at high integration density. The ReRAM function is based on the capability of certain metal/metal oxide/metal cells to change the resistance when electric stimuli are applied. For cell dimensions of a few 10 nm in each direction, the local uniformity of the resistive switching (RS) layer and its compositional homogeneity become an issue. So far, a lot of ReRAM research has been performed on rather thick (>25 nm) oxides grown by physical vapor deposition. For industrial application, atomic layer deposition (ALD) will be given priority because of its potential to grow ultrathin metal oxide films of high density and homogeneity with a conformal coverage. Most ALD oxide films are as grown in the amorphous state and crystallization heat treatment is performed prior to integration. However, for ultrathin (~10 nm) films there is rather limited information on compositional homogeneity after annealing. This effect is of particular importance for ternary thin films where the local cation (off-) stoichiometry might affect the microstructure and also the switching performance of the entire device. Highest integration density of ReRAM is achieved if the individual memristors are integrated into a passive crossbar array. However, sneak path currents through unselected cells neighbouring the switching cell put a severe restriction on the maximal achievable amount of cells in this array. Therefore, biploar-type selectors have to be added to each memristor. Selectors can be obtained from volatile threshold switches, like, for example, NbO$_{2}$, while the adjustment of the required phase is an issue. Inspired by the dynamics of the constantly growing ReRAM research this work deals with two oxidic materials where stoichiometries and phase formations play a crucial role. Both systems, namely strontium titanate (Sr$_{x}$Ti$_{y}$O$_{z}$ (short: STO)) and niobium oxide (Nb$_{2}$O$_{5}$/NbO$_{2}$), have been so far seldomly utilized in ReRAM devices when grown by [...]
000841226 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000841226 8564_ $$uhttps://juser.fz-juelich.de/record/841226/files/Information%2052%20Aslam.pdf$$yOpenAccess
000841226 8564_ $$uhttps://juser.fz-juelich.de/record/841226/files/Information%2052%20Aslam.gif?subformat=icon$$xicon$$yOpenAccess
000841226 8564_ $$uhttps://juser.fz-juelich.de/record/841226/files/Information%2052%20Aslam.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841226 8564_ $$uhttps://juser.fz-juelich.de/record/841226/files/Information%2052%20Aslam.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841226 8564_ $$uhttps://juser.fz-juelich.de/record/841226/files/Information%2052%20Aslam.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841226 8564_ $$uhttps://juser.fz-juelich.de/record/841226/files/Information%2052%20Aslam.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841226 909CO $$ooai:juser.fz-juelich.de:841226$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000841226 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841226 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000841226 9141_ $$y2017
000841226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140489$$aForschungszentrum Jülich$$b0$$kFZJ
000841226 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000841226 920__ $$lyes
000841226 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000841226 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841226 980__ $$aphd
000841226 980__ $$aVDB
000841226 980__ $$abook
000841226 980__ $$aI:(DE-Juel1)PGI-7-20110106
000841226 980__ $$aI:(DE-82)080009_20140620
000841226 980__ $$aUNRESTRICTED
000841226 9801_ $$aFullTexts