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Renormalization of effective interactions in a negative charge transfer insulator
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We compute from first principles the effective interaction parameters appropriate for a low-energy description

of the rare-earth nickelate LuNiO3 involving the partially occupied eg states only. The calculation uses the

constrained random-phase approximation and reveals that the effective on-site Coulomb repulsion is strongly

reduced by screening effects involving the oxygen-p and nickel-t2g states. The long-range component of the

effective low-energy interaction is also found to be sizable. As a result, the effective on-site interaction between

parallel-spin electrons is reduced down to a small negative value. This validates effective low-energy theories

of these materials that were proposed earlier. Electronic structure methods combined with dynamical mean-field

theory are used to construct and solve an appropriate low-energy model and explore its phase diagram as a

function of the on-site repulsion and Hund’s coupling. For the calculated values of these effective interactions,

we find that in agreement with experiments, LuNiO3 is a metal without disproportionation of the eg occupancy

when considered in its orthorhombic structure, while the monoclinic phase is a disproportionated insulator.

DOI: 10.1103/PhysRevB.96.205139

I. INTRODUCTION

The interplay between the atomic physics and strong
covalent bonding in transition-metal oxides (TMOs) results
in a variety of fascinating phenomena [1]. The energy scale
spanned by the hybridized states formed by the d orbitals of
the transition metal and the p states of oxygen is typically of
the order of 10 eV. However, it is often useful for a physical
understanding to use a “low-energy” description in which only
a subset of the metal-oxygen antibonding states is retained,
namely, the partially occupied states in proximity to the Fermi
level. Those usually span a narrower energy window of a few
electron volts. Moving from the full high-energy description to
a low-energy model allows one to reduce the dimension of the
Hilbert space considerably, and quite often provides physical
insight into the behavior of a material. This is particularly
relevant to late transition-metal oxides involving antibonding
eg orbitals, as exemplified by the Zhang-Rice single-band
picture of cuprates [2].

A price to pay for this simplification is the renormalization
of interaction parameters when high-energy states are inte-
grated out. These renormalizations can be large, and evaluating
the proper values of low-energy interactions is a challenging
problem of great practical importance. In all TMOs, an
important interaction is the Coulomb repulsion Udd between
localized, atomiclike d states of the TM cation. In late TMOs,
however, the energy scale relevant for low-energy states is the
charge transfer energy, which can be much smaller [3] than
Udd .

A class of materials in which this issue is particularly
relevant is the family of rare-earth nickelates, RNiO3. These
materials have a very large degree of covalency between the Ni
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and O states [4]. This may result in the charge transfer energy
being very small in magnitude and possibly negative [5–9],
leading to the appearance of holes on ligand (oxygen) states
in the ground state [10]. A direct confirmation of the presence
of ligand holes has been recently provided by x-ray absorption
and resonant inelastic x-ray scattering experiments [11].

The metal-insulator transition (MIT) of the RNiO3 series
is accompanied by a structural transition from the high-T
orthorhombic structure to a low-T monoclinic structure. In
the latter, the uniform octahedra of the orthorhombic structure
distort into a set of compressed octahedra with short Ni-O
bonds (SBs) and a set of expanded octahedra with long
bonds (LBs). A qualitative, somewhat extreme picture of the
low-T phase [8,12] is to assign the configuration d8 to the

Ni sites of the LB octahedra and d8L
2

(with two ligand holes
delocalized on neighboring oxygens) to the SB octahedra. This
is in contrast to the nominal valence Ni-d7 suggested by a
naive counting in the ionic limit (with R3+, O2−) so that the

picture above can be summarized as d7 + d7 → d8 + d8L
2
.

Correspondingly, in this extreme picture, the LB sites would
carry a spin-one magnetic moment, while the SB sites would
carry no magnetic moment (the Ni moment being screened
by the oxygen holes [12]). Note that this disproportionation
does not necessarily correspond to a large-amplitude charge
ordering since each oxygen actually belongs to both a SB and
LB octahedron so that the average charge on each octahedron
can remain weakly modulated or even uniform.

Subedi et al. [13] recently proposed a low-energy de-
scription of the electronic structure of the RNiO3 series,
involving only the p − d hybridized antibonding states with
eg symmetry close to the Fermi level. In this description, the
above disproportionation can be viewed as e1

g + e1
g → e2

g + e0
g

(Fig. 1). Building on earlier ideas by Mazin et al. [14], these
authors showed that such a disproportionation is favored by a
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FIG. 1. Schematic picture of the disproportionation associated

with the metal-insulator transition for a two-site model consisting

of a LB site and a SB site. The energy of the LB site is lowered,

compared to that of the SB site, by the Peierls energy �s . Each

site carries two eg orbitals. In the doubly occupied configuration,

each orbital is occupied by a single electron with parallel spins, in

accordance with Hund’s rules. An on-site interaction U σσ between

electrons with parallel spins is considered, as well as an intersite

interaction V σσ . In the atomic limit where hopping is neglected, the

criterion for stabilizing the disproportionated state e2
g + e0

g over the

uniform one e1
g + e1

g reads U σσ − V σσ < �s . The extension of this

criterion to a whole lattice in the presence of hopping is discussed in

the main text.

strong reduction of the effective U acting on the low-energy
eg states and by a large value of the low-energy Hund’s
coupling J . More precisely, the monoclinic distortion splits
the low-energy eg states into two groups of states separated
by a Peierls-like energy gap �s (note that this gap opens
at the energy corresponding to half filling, and is hence
not directly responsible for the transition into the insulating
state of these nominally quarter-filled compounds). Using
dynamical mean-field theory (DMFT) [15] in combination
with density functional calculations, a U -J phase diagram
was established for the low-energy model, demonstrating that
a disproportionated insulating phase is present in the range
of coupling parameters where the parallel-spin interaction
Uσσ = U − 3J is smaller than the Peierls gap �s .

The low-energy picture of Subedi et al. [13] is in
good agreement both with experiments (e.g., optical spec-
troscopy [16,17]) and with earlier DMFT calculations, in-
cluding all Ni-d and O-p states [12]. However, the question
of whether the strongly renormalized value of the effective
low-energy interaction Uσσ = U − 3J is indeed realistic
remains widely open. A first-principles calculation of these
low-energy effective interactions is obviously highly desirable.
Furthermore, Ref. [13] did not consider the role of intersite
interactions, which are surely induced when downfolding onto
a low-energy model and are known to be important in materials
with electronic disproportionation or charge ordering [18–26].
When the intersite interaction V between the LB and SB
sites is included, the more accurate condition for charge
disproportionation becomes Uσσ − Vσσ < �s for the two-site
case treated in the atomic limit, as depicted in Fig. 1. For
the full problem, one needs to include hopping, correctly treat
the lattice connectivity, and also include the effect of long-
range Coulomb interactions, which are important in insulators.
There is little experimental spectroscopic information on such
long-range interactions. The aim of the present paper is to

attempt a first-principles determination of the appropriate low-
energy parameters, and examine the physical consequences of
the obtained values in light of the issues discussed above.

The approach that we shall adopt is the constrained random-
phase approximation (cRPA) [27]. This method has proven
successful in calculating interaction parameters between elec-
trons in localized d or f states assumed to be screened by
more extended s and p states [28–34]. In this paper, we
apply this method to calculate the interaction parameters
corresponding to low-energy states of LuNiO3, which exhibits
the largest distortion amongst the family of RNiO3. It is worth
emphasizing that such a system represents a true challenge to
cRPA because the contributions to screening come both from
extended O-p, with possible ligand holes, which are very close
in energy to the eg states and strongly hybridized, and also from
localized completely filled t2g states of the Ni ions.

In this paper, we show that despite these challenges, the
cRPA method is indeed able to produce the large renor-
malization of the Coulomb repulsion U . We also show that
Uσσ is further effectively reduced due to intersite Coulomb
interactions down to values comparable to the Peierls gap �s ,
hence establishing on firm grounds the low-energy description
suggested previously [13,14], with the additional twist of
large nonlocal interactions effectively renormalizing the local
ones. We calculate the phase diagram of LuNiO3 within
a combination of density-functional-theory-based electronic
structure and dynamical mean-field theory (DFT+DMFT),
including the intersite interactions at a static mean-field level.
For the cRPA values of U , J and of the intersite interactions,
our DFT+DMFT calculations yield a metallic state for the
orthorhombic phase and a disproportionated insulator for the
monoclinic one, in agreement with experiments.

This paper is organized as follows. In Sec. II, we provide an
introduction to the electronic structure of LuNiO3 and to the ef-
fective low-energy description in terms of eg states. In Sec. III,
we implement the constrained random-phase approximation
and compute the resulting ab initio interaction parameters.
In Sec. IV, we summarize the ab initio construction of the
low-energy effective model and explore its phase diagram
within the DFT+DMFT framework for both the orthorhombic
and monoclinic phases, as a function of U and J . We show that
the cRPA-calculated values of these parameters correspond to
a location of each of the two structures in this phase diagram,
which is physically consistent. Our results and findings are
briefly summarized and discussed in Sec. V.

II. ELECTRONIC STRUCTURE AND LOW-ENERGY

MODEL

The electronic structure of both the low-temperature mon-
oclinic (space group P 21/n; see Fig. 2) and high-temperature
orthorhombic (Pbnm) phases of LuNiO3 have been calculated
using the experimental lattice structures provided in Ref. [35]
(a,b,c = 5.132, 5.529, 7.344 Å at T = 673 K for Pbnm and
a,b,c = 5.124, 5.509, 7.355 Å at T = 533 K for P 21/n). The
unit cells of both structures contain four formula units, but the
monoclinic one differs by having two distinct types of NiO6

octahedra: one with short Ni-O bonds and one with long bonds
corresponding to compressed and expanded octahedra. For the
reader’s convenience, we list the fractional coordinates of the
Ni sites in the monoclinic cell in Table I.

205139-2



RENORMALIZATION OF EFFECTIVE INTERACTIONS IN . . . PHYSICAL REVIEW B 96, 205139 (2017)

FIG. 2. LuNiO3 in the monoclinic phase (P 21/n with the a−a−c+

octahedra rotation pattern in Glazer notation). Oxygen atoms (red)

form distorted octahedra containing Ni (gray). This structure is

intercalated with Lu atoms (turquoise). The short-bond (SB) and

long-bond (LB) octahedra are identified. The labels of the Ni atoms

correspond to the positions given in Table I.

In our density-functional-theory (DFT) calculations within
the local-density approximation (LDA), we have employed
the full-potential augmented-plane-wave (FLAPW) method as
implemented in the FLEUR package [36,37]. All calculations
were performed using a k mesh consisting of 4 × 4 × 2
points.

The calculated low-energy band structure of monoclinic
LuNiO3 (top panel of Fig. 3) features a manifold of eight eg

bands in the range of [−0.4 : 1.9] eV around the Fermi level,
with the filled t2g bands located below −0.7 eV in energy and,
hence, well separated from the eg ones. We note that a small
“Peierls gap,” �DFT

s ≃ 0.25 eV, separates the eg bands into two
sets of four bands (except an isolated point U ), at an energy
corresponding to the nominal filling of two electrons per site
(half filling), i.e., about +0.5 eV above the LDA Fermi level.
The Peierls gap originates from the existence of two types of
sites in the distorted monoclinic phase: LB sites are pushed
down in energy relative to the more covalent SB sites, for

TABLE I. Fractional coordinates and types of Ni sites in the

monoclinic structure of LuNiO3. Ni1 and Ni2 are of the LB type and

lie diagonally across from each other, as do the SB sites Ni3 and Ni4.

Ni1 has as nearest neighbors 2 × Ni3 in the z direction and 4 × Ni4

in the x-y plane.

Type X Y Z

Ni1 LB 1
2

0 0

Ni2 LB 0 1
2

1
2

Ni3 SB 1
2

0 1
2

Ni4 SB 0 1
2

0
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FIG. 3. The band structure of the monoclinic (top) and or-

thorhombic (bottom) phases of LuNiO3 for a unit cell consisting

of four formula units. The DFT bands are shown in red and the band

structure produced by the Wannier-basis low-energy Hamiltonian is

shown in blue. Within the numerical accuracy, the Wannier bands

are identical to the DFT eg bands. The Peierls gap in the monoclinic

phase splits the set of eight eg bands into two separated sets of four

bands.

which the Ni d and O p orbitals overlap more. The DFT band
structure of the orthorhombic phase is quite similar to that of
the monoclinic phase (bottom panel of Fig. 3) apart from the
fact that the Peierls gap is, of course, closed in this case.

In order to construct the quadratic part of the low-energy
model, we downfold the states around the Fermi energy. A
set of maximally localized Wannier functions representing
correlated eg states on Ni sites was constructed from the
eight eg bands using the WANNIER90 package [38]. Given the
absence of entanglement between the eg bands and the rest
of the electronic structure in LuNiO3, the projection from the
space of Kohn-Sham eg eigenstates onto the Wannier basis is
simply a unitary transformation. Hence, by diagonalizing the
resulting low-energy Wannier Hamiltonian, one reproduces
the original DFT bands, as shown in Fig. 3.
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III. CONSTRAINED RANDOM-PHASE APPROXIMATION

A. Method description

With the quadratic part of the low-energy Hamiltonian
for the eg states, we perform ab initio calculations of the
corresponding interaction terms using the constrained random-
phase approximation (cRPA) [27].

The main idea behind the cRPA is to write the effective
interactions suitable for a low-energy multiband model as
the matrix elements of a partially screened interaction in the
chosen localized basis. Calculations within the cRPA method
start from the evaluation of the bare (unscreened) Coulomb
vertex v. The partial polarization function Pr (ω) is then
calculated. This describes the screening of v within RPA by
including all particle-hole transitions, except those within the
low-energy eg subspace, i.e., Pr (ω) = P (ω) − Peg

(ω), where
P (ω) is the total polarization function and Peg

(ω) is the
contribution of all transitions within the low-energy subspace.
Processes within the low-energy subspace will be subsequently
treated explicitly by solving the low-energy Hamiltonian with
more sophisticated many-body techniques beyond the RPA,
such as DMFT.

The partially screened frequency-dependent interaction is
obtained as Wr (ω) = v/[1 − Pr (ω)v]. The Hubbard interac-
tions are then obtained from matrix elements of the static
limit Wr (ω = 0) of this effective interaction. An important
advantage of the cRPA is its ability to easily treat intersite
interactions, as demonstrated in Refs. [39–41].

The cRPA procedure is unambiguously defined when a
subset of correlated states is separated from the rest of
the bands, as is the case with the eg bands of LuNiO3.
However, in the case of an entanglement between correlated
and uncorrelated bands, one faces the problem of determining
which screened processes should be included in Pr (ω). The
two schemes that have been proposed to date to handle this
issue, i.e., disentanglement [42] and projection [43], both
give identical results in our case with Peg

(ω) including all
transitions within the eg manifold, as the eight eg bands are
well separated from all other bands.

In our calculations, the on-site and intersite effective
interactions between Ni eg states are obtained using the cRPA
functionality of the SPEX code, a GW code based on the
FLEUR [36] electronic structure package [44]. There were 800
Kohn-Sham bands included, up to the energy cutoff of 140 eV
in P (ω) and, correspondingly, Pr (ω). In order to correctly
describe semicore and high-energy Kohn-Sham states, we
extended the FLAPW basis by including additional local
orbitals [45,46]. Namely, we included local orbitals for the
3s, 4s, 5s, 3p, 4p, 5p, 3d, 4d, 4f , and 5f shells of Ni; 2s, 3s,
2p, 3p, 3d, 4d, 4f , and 5f shells of O; 5s, 6s, 7s, 5p, 6p, 7p,
5d, 6d, 4f , and 5f shells of Lu; as well as 6g and 7h shells
on all atoms.

The cRPA scheme gives access to the fully frequency-
dependent interactions and, in principle, it is possible to per-
form many-body calculations including this dynamical char-
acter of the interactions [47–49]. In the low-energy electronic
structure, the main consequence of dynamical screening is a
renormalization of the single-particle hopping parameters by
a renormalization factor that can by explicitly calculated once
U(ω) is known [47]. It has been argued, however, that in real

materials, partial cancellations of this renormalization with
band widening effects by nonlocal exchange occur [50,51],
and including one but not the other leads to inconsistencies.
A consistent treatment of both together can naturally be
obtained within combined many-body perturbation theory and
dynamical mean-field theory schemes, e.g., in the so-called
GW+DMFT scheme [52] or simplified variants [49,53], and
recent materials studies have both highlighted the cancellation
effects [51,54,55] and subtle Fermi-surface renormalizations
going beyond [49]. Since in the present work, however, we
are mainly interested in the energetics of charge ordering
phenomena that should not depend on the fine details of the
band dispersions, we disregard both effects, relying on the
overall cancellation effects between dynamical screening and
nonlocal (exchange) self-energy contributions evidenced in
the literature. Finally, one may wonder about the validity of
the cRPA for the calculation of the static Hubbard interactions,
given that it reduces polarization effects to particle-hole bubble
diagrams neglecting any vertex effects. Several recent works
have addressed this question based on different strategies:
Ref. [56] proposed a self-screening corrected version of the
cRPA, analogously to the self-screening corrected GW scheme
of Ref. [57]. These authors moreover investigate the accuracy
of the cRPA for a three-band model with on-site interactions.
Since they do not include hybridizations, however, the bands
effectively decouple and the bare interaction turns out to
be the optimal value for the effective interaction. These
authors further note the difficulty to extend the study to
more realistic models since those should include both a
substantially larger number of screening degrees of freedom
to simulate the extended environment in a solid and the
long-range interactions present in realistic materials. An
alternative strategy of assessing the limitations of the cRPA
has been presented by Kinza and Honerkamp [58]. In this
work, functional renormalization-group techniques are used to
include, in a systematic diagrammatic way, corrections to the
cRPA contributions. While the difficulty to go to sufficiently
realistic models to compare with real materials problems also
persists here, an interesting result of this work stems from
an analysis of the role of symmetries: the authors argue that
in systems with different symmetries of target bands and
screening bands, corrections beyond cRPA are small since
certain classes of diagrams are suppressed by selection rules.
In the present case, this situation is indeed realized since our
target bands are dominantly of eg character, while screening
bands consist of non-eg states. While giving quantitative
error bars for cRPA calculations thus remains difficult, these
arguments nevertheless suggest that cRPA is fully justified for
our purposes.

B. cRPA results for LuNiO3

Here we discuss the interaction parameters for the low-
energy models as obtained by cRPA. We consider only the
density-density interaction terms for parallel and antiparallel
spins. Note that the coupling constants JX and JP , correspond-
ing respectively to the spin-flip and pair-hopping terms, can be
obtained from the density-density terms under the assumption
of rotational invariance. All results are given in the basis of
the eight eg orbitals, ordered as z2 and x2 − y2 for each of the
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four Ni sites as given above. The results for the orthorhombic
phase are given in Table II and those for the monoclinic phase
are given in Table III.

1. Orthorhombic LuNiO3

For the orthorhombic phase of LuNiO3, the average density-
density interaction between electrons with opposite spins
in the same orbital is found to be U = 1.65 eV, and that
between opposite spins in different orbitals is U ′ = 0.99 eV.
The interaction between parallel spins in different orbitals is
the smallest, in accordance with Hund’s rule, being reduced
to Uσσ = U ′ − J = 0.66 eV. We observe that despite the
orthorhombic distortion, these parameters almost perfectly
obey the relation U ′ = U − 2J expected for a cubic system,
with U = 1.65 eV, J = 0.33 eV.

The average nearest-neighbor parallel-spin interaction V σσ
1

is 0.42 eV, where the average is taken evenly over both
neighbors in the unit cell, comparable to the average on-site
parallel-spin interaction U ′ − J = 0.66 eV. Additionally, the
next-nearest-neighbor parallel-spin interaction V σσ

2 can be
estimated from, e.g., Ni1 and Ni2, to be 0.30 eV.

2. Monoclinic LuNiO3

For the monoclinic phase, we obtain for the averaged
parameters U = 1.83, U ′ = 1.09, and U ′ − J = 0.74 eV,
which is fairly consistent with the Kanamori parametrization
for a cubic system with U = 1.83,J = 0.37 eV’s.

The on-site parallel-spin interaction Uσσ = U − 3J =

0.74 eV is again of a similar order of magnitude to the average
nearest-neighbor parallel-spin interaction V σσ

1 = 0.44 eV. In
this case, due to the distortions in the structure, the average
needs to be weighted to account for the fact that Ni1 has
four Ni4 atoms and two Ni3 atoms as neighbors. For the
next-nearest-neighbor interaction, we obtain V σσ

2 = 0.31 eV.

3. Long-range nature of interactions

For both phases, we notice that the nearest-neighbor
intersite interactions V1, for example between Ni1 and Ni3 and
between Ni1 and Ni4, are found to be non-negligible. It must be
emphasized that the contributions to screening from particle-
hole transitions within the eg manifold of bands are excluded in
the cRPA procedure. Indeed, the effective interactions obtained
from cRPA are to be used in the low-energy effective eg model,
and further screening relies on the many-body treatment of
this model (e.g., with DMFT). As a result, the interactions in
the low-energy effective model are screened exclusively by
interband transitions, as in an insulator, and thus one should
expect significant long-range Coulomb interactions. Indeed,
the second-nearest-neighbor interactions V2 are likewise quite
large. Upon closer inspection, it is clear that the interactions
up to the second shell of neighbors decay as 1/R, indicating
that long-range interactions must be accounted for to reach
an accurate description of the physics of these materials.
The situation is comparable to the recently studied case of
Sn/Si(111) [39–41]: there it was shown that the continuum
limit that allows one to parametrize the interaction tail as
V1

R
with the nearest-neighbor interaction V1 = ǫ−1V bare

1 , with
ǫ the macroscopic dielectric constant, is already reached at
nearest-neighbor distances. Similarly, in graphene, the long-

range tail of the interactions was argued to be responsible
for the necessary screening to prevent the system from
becoming a Mott insulator [59]. More generally, the effects
of nonlocal interactions in correlated materials and models
thereof have recently raised tremendous interest in the com-
munity [23,24,26,60–67], within different lattice geometries.

From Tables II and III, one may also conclude that the spin
dependence of intersite interactions is negligible; the exchange
interaction arises due to direct overlap of the eg orbitals and,
therefore, is well localized. Hence, from now on, we will
suppress the spin subscripts in the intersite interactions V .

IV. PHYSICAL CONSEQUENCES FOR LuNiO3

AND DMFT CALCULATIONS

A. Effective theory for low-energy eg states

From the sections above, we can infer the following
effective Hamiltonian for a description of LuNiO3 involving
only low-energy eg states:

Ĥ = Ĥ0 +
∑

i

Ĥ
(i)
U + ĤV . (1)

In this expression, Ĥ0 is the single-electron part of the
effective Hamiltonian. Within the DFT+DMFT framework,
Ĥ0 is constructed as

Ĥ0 = Ĥ 0
DFT − Ĥdc, (2)

with Ĥ 0
DFT the single-electron Kohn-Sham Hamiltonian for

eg bands, as obtained from DFT(-LDA) and Ĥdc is a double-
counting correction to be detailed below. The many-body terms
ĤU and ĤV are local (on-site) and intersite interaction terms,
respectively. For the local term, the full Kanamori Hamiltonian
appropriate for eg states is considered, namely, on each lattice
site (i):

ĤU = U
∑

m

n̂m↑n̂m↓ + (U − 2J )
∑

m�=m′

n̂m↑n̂m′↓

+(U − 3J )
∑

m<m′,σ

n̂mσ n̂m′σ

−J
∑

m�=m′

c
†
m↑cm↓c

†
m′↓cm′↑ + J

∑

m�=m′

c
†
m↑c

†
m↓cm′↓cm′↑.

The intersite term is taken to be of the form

ĤV =
1

2

∑

i �=j

Vij n̂i n̂j .

In this expression, the coupling constants U , J , and Vij =

V1/Rij (with Rij the distance between the two atomic sites i,j )
are determined from the cRPA calculations presented above.

In the following, we show that this low-energy effective
model with cRPA values of the interaction parameters provides
a satisfactory description of the physics of LuNiO3. This
is done by using the DFT+DMFT framework in order to
construct and solve the low-energy model. We find that
intersite interactions must be taken into account in this low-
energy description: they are included in our calculations at the
level of Hartree mean-field theory. Finally, these findings are
discussed in relation to the low-energy picture of rare-earth
nickelates proposed in Ref. [13].
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TABLE II. Umm′ for antiparallel and parallel spins for orthorhombic LuNiO3. All values in eV. Two-index parameters are related to

four-index ones as U σ σ̄
mm′ = Umm′mm′ , U σσ

mm′ = Umm′mm′ − Umm′m′m.

U σ σ̄
mm′ (antiparallel spin)

Ni1, z2 Ni1, x2 − y2 Ni2, z2 Ni2, x2 − y2 Ni3, z2 Ni3, x2 − y2 Ni4, z2 Ni4, x2 − y2

1.77 0.99 0.32 0.30 0.62 0.43 0.39 0.42

0.99 1.54 0.30 0.27 0.43 0.33 0.40 0.45

0.32 0.30 1.77 0.99 0.39 0.40 0.62 0.43

0.30 0.27 0.99 1.54 0.42 0.45 0.43 0.33

0.62 0.43 0.39 0.42 1.77 0.99 0.32 0.30

0.43 0.33 0.40 0.45 0.99 1.54 0.30 0.27

0.39 0.40 0.62 0.43 0.32 0.30 1.77 0.99

0.42 0.45 0.43 0.33 0.30 0.27 0.99 1.54

U σσ
mm′ (parallel spin)

Ni1, z2 Ni1, x2 − y2 Ni2, z2 Ni2, x2 − y2 Ni3, z2 Ni3, x2 − y2 Ni4, z2 Ni4, x2 − y2

0.00 0.66 0.32 0.30 0.59 0.42 0.38 0.41

0.66 0.00 0.30 0.27 0.42 0.33 0.39 0.42

0.32 0.30 0.00 0.66 0.38 0.39 0.59 0.42

0.30 0.27 0.66 0.00 0.41 0.42 0.42 0.33

0.59 0.42 0.38 0.41 0.00 0.66 0.32 0.30

0.42 0.33 0.39 0.42 0.66 0.00 0.30 0.27

0.38 0.39 0.59 0.42 0.32 0.30 0.00 0.66

0.41 0.42 0.42 0.33 0.30 0.27 0.66 0.00

B. Hartree treatment of long-range interactions

In order to take the intersite terms into account, we employ
the Hartree approximation for long-range interactions, which
provides a leading contribution to the self-energy in the
disproportionated phase. Note that this is consistent with
the DMFT approach, in which only local interactions have
dynamical effects, while nonlocal interactions are treated at the
static mean-field level. One might argue that dynamical effects
beyond DMFT, as included in, e.g., the extended dynamical

mean-field theory (EDMFT), could also be important for this
system. Indeed, it is well known that dynamical fluctuations
can give substantial deviations from the static mean-field
treatment of intersite interactions. However, these mainly
appear in the regime of stronger coupling where the charge
order transition emerges from the Mott insulating phase,
while—at least at the level of a simple extended Hubbard
model—deviations are small in the regime of weaker coupling
(see Fig. 8 of Ref. [67]).

TABLE III. Umm′ for antiparallel and parallel spins for monoclinic LuNiO3. All values in eV. Two-index parameters are related to four-index

ones as U σ σ̄
mm′ = Umm′mm′ , U σσ

mm′ = Umm′mm′ − Umm′m′m.

U σ σ̄
mm′ (antiparallel spin)

Ni1, z2 Ni1, x2 − y2 Ni2, z2 Ni2, x2 − y2 Ni3, z2 Ni3, x2 − y2 Ni4, z2 Ni4, x2 − y2

1.73 1.07 0.32 0.31 0.63 0.46 0.39 0.44

1.07 1.88 0.31 0.29 0.45 0.37 0.43 0.50

0.32 0.31 1.73 1.07 0.39 0.42 0.63 0.46

0.31 0.29 1.07 1.88 0.44 0.50 0.45 0.37

0.63 0.45 0.39 0.44 1.82 1.12 0.32 0.31

0.46 0.37 0.42 0.50 1.12 1.89 0.31 0.29

0.39 0.43 0.63 0.45 0.32 0.31 1.82 1.12

0.44 0.50 0.46 0.37 0.31 0.29 1.12 1.89

U σσ
mm′ (parallel spin)

Ni1, z2 Ni1, x2 − y2 Ni2, z2 Ni2, x2 − y2 Ni3, z2 Ni3, x2 − y2 Ni4, z2 Ni4, x2 − y2

0.00 0.74 0.32 0.31 0.60 0.45 0.38 0.43

0.74 0.00 0.31 0.29 0.45 0.37 0.42 0.48

0.32 0.31 0.00 0.74 0.38 0.42 0.60 0.45

0.31 0.29 0.74 0.00 0.43 0.48 0.45 0.37

0.60 0.45 0.38 0.43 0.00 0.83 0.32 0.31

0.45 0.37 0.42 0.48 0.83 0.00 0.31 0.29

0.38 0.42 0.60 0.45 0.32 0.31 0.00 0.82

0.43 0.48 0.45 0.37 0.31 0.29 0.82 0.00
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In the Hartree approximation, ĤV reduces to

ĤV →
1

2

∑

i �=j

Vij [ni n̂j + nj n̂i − ninj ],

with the effective Hartree one-body Hamiltonian and potential

Ĥeff =
∑

i

VH (i)n̂i, VH (i) =
∑

j �=i

Vijnj .

The total energy from the interacting part of the Hamiltonian
is thus

EV [{ni}] =
1

2

∑

i �=j

Vijninj =
1

2

∑

i

VH (i)ni . (3)

Let us now consider the present case of the Ni sublattice
in LuNiO3. It can be well approximated by the NaCl-type
bipartite lattice with two inequivalent, LB and SB, sublattices
with occupancies nLB and nSB per site, respectively. Given that
the system is charge neutral, the formally diverging term on the
right-hand side of Eq. (3) can be summed using the Madelung
method, resulting in the following sublattice potentials:

VH (LB) = −MV1(nLB − nSB)/2,

VH (SB) = +MV1(nLB − nSB)/2,

where M is the Madelung constant for the NaCl lattice and the
uniform part of the potential is dropped.

By comparing this result with the Hartree term with only
nearest-neighbor interactions,

V nn
H (LB) = − zeffV1 (nLB − nSB)/2,

V nn
H (SB) = + zeffV1 (nLB − nSB)/2,

we can identify M as an effective connectivity of the lattice

zeff = M ≈ 1.747.

Note that the effect of the Madelung summation is that the
effective connectivity zeff is significantly reduced as compared
to the lattice connectivity z = 6.

The Hartree potential above can be viewed as a site-
dependent contribution to the self-energy coming from the
intersite interactions, which reads

�V
α = zeffV1(nᾱ − nα)/2. (4)

In this expression, ᾱ designates the opposite sublattice relative
to α, i.e., if α = SB, then ᾱ = LB, and vice versa; nα is the eg

occupancy of the corresponding site.

C. Atomic limit

Before discussing the DFT+DMFT results, we first con-
sider the atomic limit in which all hopping terms in the
Hamiltonian (1) are set to zero so that Ĥ0 contains only an on-
site Peierls potential equal to −�s/2 on LB sites and +�s/2
on SB sites (see Fig. 1). We will compare in this limit the
energies of two states: the uniform one (UN) nLB = nSB = 1
and the fully disproportionated one (FD) nLB = 2,nSB = 0.

The contribution of the on-site Peierls potential to the
energy is −�s

∑

i∈LB ni/2 + �s

∑

i∈SB ni/2: it vanishes in
the uniform state and provides an energy gain −�s(Ns/2) in
the FD state, with Ns the total number of lattice sites. The

on-site interaction energy vanishes too in the UN state, and
is equal to +UσσNs/2 in the FD state with Uσσ = U − 3J ,
since two electrons on a LB site will occupy the high-spin
Hund’s rule configuration with one electron in each of the two
eg orbitals. Finally, using the above expressions in the Hartree
approximation, the contribution of the intersite interactions to
the energy reads

〈ĤV 〉 = −
Ns

8
zeffV1(nLB − nSB)2. (5)

It vanishes again in the UN state and provides an energy gain
−V1zeffNs/2 in the FD state. Hence, the energy difference
between the FD state and the uniform one reads, in the atomic
limit,

EFD − EUN =
Ns

2
[Uσσ − zeffV1 − �s]

=
Ns

2
[U − 3J − zeffV1 − �s]. (6)

The transition into the charge-disproportionated state in the
atomic limit occurs, therefore, when

Uσσ − zeffV1 < �s . (7)

Note that if only the nearest-neighbor component of the
nonlocal interactions is taken into account, the FD state is
stable for Uσσ − zV1 < �s . The above criterion in the pres-
ence of long-range interaction simply amounts to replacing
the connectivity of the lattice z by the effective Madelung
connectivity.

Let us consider the orthorhombic phase where �s = 0.
The above criterion then reads U − 3J − zeffV1 < 0. Hence, a
small enough value of U (e.g., strongly reduced by screening)
or a large enough value of the Hund’s coupling J leads to
an instability into the disproportionated state, as noted in
previous work [13,14]. In the present context, this instability is
a spontaneous symmetry breaking of electronic origin, since
all Ni sites are equivalent (�s = 0) in this crystal structure.
Our cRPA results for LuNiO3 in the orthorhombic phase yield
Uσσ − zeffV1 ≃ −0.1eV : the combined effect of screening
and long-range interactions yields a small but negative value
of this quantity, which is consistent with the physical picture of
Subedi et al. [13]. Hence, surprisingly, in the atomic limit, we
would conclude that the orthorhombic phase is spontaneously
unstable to disproportionation. In reality, as shown below, the
inclusion of intersite hopping in a full DFT+DMFT treatment
leads to the correct conclusion that the orthorhombic phase
is not electronically disproportionated—with the atomic-limit
estimate providing a considerable overestimation of the range
of stability of the FD state. However, inaccurate as it may be
(especially in the metallic state), the virtue of this atomic-limit
estimate is to emphasize how screening, a large J , and sizable
intersite interactions can lead to disproportionation.

In the monoclinic phase, we obtained Uσσ = 0.74 eV,
V1 = 0.44 eV, and hence Uσσ − zeffV1 ≃ −0.03 eV. Basically,
any positive value of the Peierls energy gap, which is nonzero
in this phase, will thus stabilize a fully disproportionated state
in the atomic limit. As shown below, monoclinic LuNiO3

is indeed found to be a disproportionated insulator when
performing DFT+DMFT calculations with these interaction
parameters.
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D. DMFT: Setup and double counting

We now turn to the results obtained in the DFT+DMFT
framework, first providing some technical details about the
calculation.

The one-electron part of the effective Hamiltonian is
Ĥ0 = Ĥ 0

DFT − Ĥdc. The DFT Hamiltonian was obtained
using the FLAPW method as implemented in the WIEN2K

software package [68], with Perdew-Burke-Erzenhof (PBE)
approximation [69] for the exchange-correlation functional. A
k mesh of 6 × 5 × 4 points is used. Projected local orbitals [70]
spanning the low-energy eg subspace are constructed us-
ing the implementation of the TRIQS/DFTTOOLS software
package [71–73].

The full local self-energy arises from both the DMFT
treatment of the local interactions HU in (1) at the dynamical
level and from the nonlocal interactions treated within the
Hartree approximation, namely,

�α(iωn) = �imp
α (iωn) − �

imp
dc,α + �V

α − �V
dc,α. (8)

In this expression, α = LB,SB is an index labeling LB and SB
sites, �V

α is the Hartree self-energy,

�V
α = zeffV1(nᾱ − nα)/2, (9)

and �
imp
α (iωn) is obtained by solving the DMFT ef-

fective impurity model using the hybridization-expansion
continuous-time quantum Monte Carlo (CTQMC) algorithm
TRIQS/CTHYB [73,74].

A double-counting (DC) correction must be included in
order to remove the contribution from interactions already
included within DFT. This DC correction can be viewed
equivalently as the Ĥdc part of Ĥ0 or as part of the self-energy.
The DC correction to the self-energy arising from the U,J

interactions is evaluated in the fully localized limit [75] as
follows [71]:

�
imp
dc,α = Ū

(

nDFT

α − 1/2
)

− J̄
(

nDFT

α /2 − 1/2
)

, (10)

while the DC correction to the Hartree self-energy associated
with the long-range interactions reads

�V
dc,α = zeffV1

(

nDFT

ᾱ − nDFT

α

)

/2. (11)

In these expressions, Ū = U − J is the average interaction
between electrons with opposite spins, J̄ = Ū − Uσσ = 2J ,
and nDFT

α is the occupancy of the Ni eg shell in DFT for the site
α = LB or SB.

In the monoclinic phase, the two inequivalent Ni sites have
different eg occupancy already at the DFT level: nDFT

α = 1.17
and 0.83 for the LB and SB sites, respectively. From the
expressions above, one sees that the Peierls energy splitting
between LB and SB sites appearing in Ĥ0 = Ĥ 0

DFT − Ĥdc is
renormalized by double counting, as compared to its DFT
value,

�s = �DFT

s + (U − 2J − zeffV1)�nDFT, (12)

with �nDFT = nDFT
LB

− nDFT
SB

. Note that given the cRPA values
above, U − 2J − zeffV1 ≃ 0.32 eV is positive so that double
counting enhances the effective value of the Peierls energy,
from ≃0.25 eV at the DFT level to �s ≃ 0.36 eV.

FIG. 4. Phase diagrams of the monoclinic (bottom) and or-

thorhombic (top) phases of LuNiO3. For the monoclinic phase: empty

circles show metallic solutions, red triangles correspond to a dispro-

portionated insulator. For the orthorhombic phase: empty circles stand

for uniform metallic, filled circles show disproportionated metallic,

and red triangles show disproportionated insulating solutions; the

blue domain contains spontaneously disproportionated (metallic or

insulating) solutions. The value of V1 is fixed to the average cRPA

value. The cRPA values of U and J are marked by the diamond, with

error bars showing variations for different sites and orbitals.

E. DMFT: Results and phase diagram

In order to explore how the values of the interaction
strengths affect the physics of LuNiO3 in each crystal structure,
we have performed a series of DFT+DMFT calculations for
a fixed value of V1 = 0.44 eV with varying U and J . The
obtained phase diagrams are presented in Fig. 4. The main
qualitative features are similar to the results of Ref. [13], in
which the nonlocal interactions were not taken into account
and only the local Kanamori interactions were included.
Specifically, both the monoclinic and orthorhombic structures
have a phase boundary separating a uniform metallic and a
disproportionated (insulating or metallic) phase. The major
quantitative difference from the earlier results is a considerable
shift of the phase boundaries to the left in the present case,
which is a direct consequence of the intersite coupling. This is
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consistent with the renormalization by V1 of the atomic-limit
stability criterium, given by Eq. (7) (dashed line in the top panel
of Fig. 4), which can be compared to Eq. (4) in Ref. [13].

We note that the location of this boundary is very different
for the orthorhombic and for the monoclinic phase, being
pushed towards much smaller values of J for the latter. This
demonstrates the strong sensitivity of the disproportionation
to the value of the Peierls energy [13].

The physical range of interaction parameters must be asso-
ciated with regions of the phase diagram corresponding to the
monoclinic phase being insulating and the orthorhombic one
being metallic with uniform distribution of site occupancies
(nondisproportionated metal). Because of the great sensitivity
of the critical boundary to �s , rather extended regions of
the (U,J ) parameter space satisfy these conditions [basically
corresponding to the area delimited by the orthorhombic (blue)
boundary to the right and the monoclinic (red) one to the left,
including the range J = 0.3–0.7 and U = 1.5–2.0].

The calculated cRPA values are marked by a (yellow)
diamond symbol on each panel of Fig. 4. They are located
well within the metallic domain for the orthorhombic phase
and just inside the insulating domain (rather close to the MIT
boundary) for the monoclinic phase. These results demonstrate
that cRPA is able to provide reasonable values of the effective
screened interactions, which correctly account for the physical
nature of each phase.

V. DISCUSSION AND CONCLUSIONS

In summary, the question we have addressed in this paper
is that of the appropriate values of interaction parameters for
rare-earth nickelates, when adopting a low-energy description
of their electronic structure involving only the partially
occupied eg states. We have calculated these effective low-
energy interaction parameters from first principles for LuNiO3,
using the constrained random-phase approximation (cRPA).
The obtained values confirm the strong reduction of the
effective on-site U by screening, down to U ≃ 1.65 eV in
the orthorhombic phase (U ≃ 1.83 eV in the monoclinic
phase), while the Hund’s coupling J remains sizable (J ≃

0.33,0.37 eV in each phase, respectively).
The cRPA results also reveal the importance of the long-

range intersite interactions, with a slow spatial decay V1/R.
V1 is found to be of the order of 0.42–0.44 eV so that these
interactions must be included in a proper low-energy treatment.
When treated at the level of a Hartree approximation, they
lead to a further reduction of the effective parallel-spin local
interaction Uσσ

eff = U − 3J − zeffV1 (with zeff the effective
Madelung connectivity), which is found to be small and
negative. This is qualitatively consistent with the picture of a
negative charge transfer insulator and validates the low-energy
description advocated in earlier work [13,14]. Let us also
note that the low-energy interaction is further renormalized

by higher-order many-body effects not taken into account
in the present work, as well as by dynamical screening due
to phonon modes. A rough estimate of the latter effect in
nickelates suggests that it is small, but a more detailed study
is left for future work. We have constructed an appropriate
low-energy model based on the cRPA effective interactions
and solved this model in the DFT+DMFT framework. We
found that the monoclinic structure falls within the bond-
disproportionated-insulator region, while the orthorhombic
structure is located deep in the uniform metallic state, in agree-
ment with experimental observations. While our calculations
take into account only electronic degrees of freedom, a full
theory of the metal-insulator transition in nickelates should
also take into account the coupling to the relevant lattice
mode associated with the structural transition: this should be
addressed in future work.

Besides the specific example of nickelates, our work can
be put in the broader context of compounds with small or
negative charge transfer leading to the possible formation of
ligand holes. We have shown that it is possible to build an
appropriate low-energy effective theory of such compounds,
involving only electronic states near the Fermi level, provided
the strong reduction of the low-energy effective interactions
is properly taken into account. This provides a perspective on
these materials which is complementary to the one in which
ligand states are explicitly retained in the description [5–7].
Future work should document the general applicability of the
present approach by considering other compounds with small
or negative charge transfer.
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and V. Dobrosavljević, Phys. Rev. B 82, 155102 (2010).

[24] T. Ayral, S. Biermann, and P. Werner, Phys. Rev. B 87, 125149

(2013).

[25] C. Février, S. Fratini, and A. Ralko, Phys. Rev. B 91, 245111

(2015).

[26] H. Terletska, T. Chen, and E. Gull, Phys. Rev. B 95, 115149

(2017).

[27] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann,

and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004).

[28] T. Miyake and F. Aryasetiawan, Phys. Rev. B 77, 085122 (2008).

[29] L. Vaugier, H. Jiang, and S. Biermann, Phys. Rev. B 86, 165105

(2012).

[30] B.-C. Shih, Y. Zhang, W. Zhang, and P. Zhang, Phys. Rev. B 85,

045132 (2012).

[31] B. Amadon, T. Applencourt, and F. Bruneval, Phys. Rev. B 89,

125110 (2014).

[32] A. van Roekeghem, L. Vaugier, H. Jiang, and S. Biermann, Phys.

Rev. B 94, 125147 (2016).

[33] S. K. Panda, H. Jiang, and S. Biermann, Phys. Rev. B 96, 045137

(2017).

[34] P. Seth, P. Hansmann, A. van Roekeghem, L. Vaugier, and S.

Biermann, Phys. Rev. Lett. 119, 056401 (2017).

[35] J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. García-

Muñoz, and M. T. Fernández-Díaz, Phys. Rev. B 61, 1756

(2000).

[36] C. Friedrich, S. Blügel, and A. Schindlmayr, Phys. Rev. B 81,

125102 (2010).

[37] S. Blügel and G. Bihlmayer, in Computational Nanoscience:
Do It Yourself! NIC Series Vol. 31, edited by J. Grotendorst,

S. Blügel, and D. Marx (John von Neumann Institute for

Computing, Jülich, 2006), p. 85; http://www.flapw.de.

[38] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,

and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

[39] P. Hansmann, L. Vaugier, H. Jiang, and S. Biermann, J. Phys.:

Condens. Matter 25, 094005 (2013).

[40] P. Hansmann, T. Ayral, L. Vaugier, P. Werner, and S. Biermann,

Phys. Rev. Lett. 110, 166401 (2013).

[41] P. Hansmann, T. Ayral, A. Tejeda, and S. Biermann, Sci. Rep.

6, 19728 (2016).

[42] T. Miyake, F. Aryasetiawan, and M. Imada, Phys. Rev. B 80,

155134 (2009).
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