000841275 001__ 841275
000841275 005__ 20210129232006.0
000841275 0247_ $$2doi$$a10.1039/C7CP03136J
000841275 0247_ $$2ISSN$$a1463-9076
000841275 0247_ $$2ISSN$$a1463-9084
000841275 0247_ $$2pmid$$apmid:28936525
000841275 0247_ $$2WOS$$aWOS:000416054400005
000841275 0247_ $$2altmetric$$aaltmetric:30697301
000841275 037__ $$aFZJ-2017-08367
000841275 082__ $$a540
000841275 1001_ $$00000-0002-8239-0043$$aWrana, D.$$b0$$eCorresponding author
000841275 245__ $$aTuning the surface structure and conductivity of niobium-doped rutile TiO 2 single crystals via thermal reduction
000841275 260__ $$aCambridge$$bRSC Publ.$$c2017
000841275 3367_ $$2DRIVER$$aarticle
000841275 3367_ $$2DataCite$$aOutput Types/Journal article
000841275 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513178733_1249
000841275 3367_ $$2BibTeX$$aARTICLE
000841275 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841275 3367_ $$00$$2EndNote$$aJournal Article
000841275 520__ $$aWe report on the systematic exploration of electronic and structural changes of Nb-doped rutile TiO2(110) single crystal surfaces due to the thermoreduction under ultra-high vacuum conditions (without sputtering), with comparison to undoped TiO2(110) crystals. It has been found that the surface of the doped sample undergoes a previously unknown transition during reduction above 850 °C, as provided by LEED, STM and LC-AFM. This transition involves a change from heterogeneous conductivity (due to the presence of conducting filaments) to homogeneous conductivity, connected with a new (4 × 2) reconstruction of rows parallel to the [001] direction. DFT calculations suggest substitution of Ti by Nb atoms in the first atomic layer. Due to the strong reducing conditions during annealing, oxygen is released from the crystal and Nb diffuses from the subsurface into the bulk, agglomerating however on the surface, as shown by SIMS depth profiling. We present that 0.5% Nb doping significantly influences the reduction process and in turn the structural properties of the surface by supporting the evolution of the new reconstruction. It is shown that the thermal treatment of TiO2:Nb under low oxygen partial pressure gives an opportunity to tune the electrical conductivity and work function of the surface.
000841275 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000841275 588__ $$aDataset connected to CrossRef
000841275 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, C.$$b1
000841275 7001_ $$0P:(DE-HGF)0$$aKrawiec, M.$$b2
000841275 7001_ $$00000-0002-3196-7244$$aJany, B. R.$$b3
000841275 7001_ $$0P:(DE-HGF)0$$aRysz, J.$$b4
000841275 7001_ $$0P:(DE-HGF)0$$aErmrich, M.$$b5
000841275 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b6
000841275 7001_ $$0P:(DE-HGF)0$$aKrok, F.$$b7
000841275 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP03136J$$gVol. 19, no. 45, p. 30339 - 30350$$n45$$p30339 - 30350$$tPhysical chemistry, chemical physics$$v19$$x1463-9084$$y2017
000841275 8564_ $$uhttps://juser.fz-juelich.de/record/841275/files/c7cp03136j.pdf$$yRestricted
000841275 8564_ $$uhttps://juser.fz-juelich.de/record/841275/files/c7cp03136j.gif?subformat=icon$$xicon$$yRestricted
000841275 8564_ $$uhttps://juser.fz-juelich.de/record/841275/files/c7cp03136j.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841275 8564_ $$uhttps://juser.fz-juelich.de/record/841275/files/c7cp03136j.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841275 8564_ $$uhttps://juser.fz-juelich.de/record/841275/files/c7cp03136j.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841275 8564_ $$uhttps://juser.fz-juelich.de/record/841275/files/c7cp03136j.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841275 909CO $$ooai:juser.fz-juelich.de:841275$$pVDB
000841275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b1$$kFZJ
000841275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich$$b6$$kFZJ
000841275 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000841275 9141_ $$y2017
000841275 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000841275 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841275 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000841275 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841275 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841275 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841275 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841275 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841275 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841275 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841275 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841275 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841275 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000841275 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841275 980__ $$ajournal
000841275 980__ $$aVDB
000841275 980__ $$aI:(DE-Juel1)PGI-7-20110106
000841275 980__ $$aI:(DE-82)080009_20140620
000841275 980__ $$aUNRESTRICTED