001     841275
005     20210129232006.0
024 7 _ |a 10.1039/C7CP03136J
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a pmid:28936525
|2 pmid
024 7 _ |a WOS:000416054400005
|2 WOS
024 7 _ |a altmetric:30697301
|2 altmetric
037 _ _ |a FZJ-2017-08367
082 _ _ |a 540
100 1 _ |a Wrana, D.
|0 0000-0002-8239-0043
|b 0
|e Corresponding author
245 _ _ |a Tuning the surface structure and conductivity of niobium-doped rutile TiO 2 single crystals via thermal reduction
260 _ _ |a Cambridge
|c 2017
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1513178733_1249
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on the systematic exploration of electronic and structural changes of Nb-doped rutile TiO2(110) single crystal surfaces due to the thermoreduction under ultra-high vacuum conditions (without sputtering), with comparison to undoped TiO2(110) crystals. It has been found that the surface of the doped sample undergoes a previously unknown transition during reduction above 850 °C, as provided by LEED, STM and LC-AFM. This transition involves a change from heterogeneous conductivity (due to the presence of conducting filaments) to homogeneous conductivity, connected with a new (4 × 2) reconstruction of rows parallel to the [001] direction. DFT calculations suggest substitution of Ti by Nb atoms in the first atomic layer. Due to the strong reducing conditions during annealing, oxygen is released from the crystal and Nb diffuses from the subsurface into the bulk, agglomerating however on the surface, as shown by SIMS depth profiling. We present that 0.5% Nb doping significantly influences the reduction process and in turn the structural properties of the surface by supporting the evolution of the new reconstruction. It is shown that the thermal treatment of TiO2:Nb under low oxygen partial pressure gives an opportunity to tune the electrical conductivity and work function of the surface.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rodenbücher, C.
|0 P:(DE-Juel1)142194
|b 1
700 1 _ |a Krawiec, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jany, B. R.
|0 0000-0002-3196-7244
|b 3
700 1 _ |a Rysz, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ermrich, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Szot, K.
|0 P:(DE-Juel1)130993
|b 6
700 1 _ |a Krok, F.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1039/C7CP03136J
|g Vol. 19, no. 45, p. 30339 - 30350
|0 PERI:(DE-600)1476244-4
|n 45
|p 30339 - 30350
|t Physical chemistry, chemical physics
|v 19
|y 2017
|x 1463-9084
856 4 _ |u https://juser.fz-juelich.de/record/841275/files/c7cp03136j.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841275/files/c7cp03136j.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841275/files/c7cp03136j.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841275/files/c7cp03136j.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841275/files/c7cp03136j.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/841275/files/c7cp03136j.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:841275
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142194
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130993
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21